Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И если когда-нибудь изобретут другое доказательство, то придется все же опереться на этот принцип, потому что выводов из тех аксиом, логическую совместимость которых нужно доказать, может быть бесконечное множество.

XI. Заключение

Наш вывод заключается прежде всего в том, что на принцип индукции нельзя смотреть как на скрытое определение целого числа.

Вот три истины:

принцип полной индукции;

постулат Евклида;

физический закон, согласно которому фосфор плавится при 44° (приводится у Леруа).

Говорят, что эти истины являются скрытыми определениями: первое есть определение целого числа, второе – прямой линии, третье – фосфора.

Я принимаю это для второй истины, но не принимаю для двух других. Объясню причину такой кажущейся непоследовательности.

Мы видели прежде всего, что определение приемлемо лишь в случае, если установлено, что оно не заключает в себе противоречия. Мы доказали также, что такое доказательство невозможно для первого определения; для второго, наоборот, Гильберт дал полное доказательство.

Что же касается третьего определения, то оно, очевидно, не заключает противоречия; но значит ли это, что определение, как это требовалось бы, с несомненностью свидетельствует о существовании определенного предмета? Мы выходим здесь из области математических наук и вступаем в область физических наук. Слово «существование» не имеет уже того смысла, что раньше, оно не обозначает отсутствия противоречия, а обозначает объективное существование.

Вот уже первое основание для различия, которое я делаю между вышеприведенными тремя случаями. Есть еще другое основание. Эти три понятия находят последующие применения; имеют ли эти понятия в применениях то значение, которое установлено этими тремя постулатами?

Возможные применения принципа индукции бесчисленны. Возьмем для примера одно из указанных нами выше применений, где мы стремились установить, что некоторая совокупность аксиом не может вести к противоречию. Для этого следует рассмотреть один из рядов силлогизмов, которые можно построить, исходя из этих аксиом как посылок.

Когда мы закончили n -й силлогизм, мы видим, что можно еще составить ( n + 1) – й силлогизм. Таким образом, число n служит для счета ряда последовательных операций, это – число, которое может быть получено путем последовательных прибавлений. Другими словами, это есть число, исходя из которого, можно прийти к единице путем последовательных вычитаний. Этого, очевидно, нельзя было бы достигнуть, если бы мы имели равенство n = n − 1, потому что в таком случае мы при вычитании всегда получали бы то же самое число. Таким образом, способ, при помощи которого мы пришли к рассмотрению этого числа n , заключает в себе определение конечного целого числа, и это определение гласит: конечное целое число есть такое число, которое может быть получено путем последовательных сложений, это есть число n , которое не равняется n − 1.

Приняв это, что делаем мы дальше? Мы показываем, что если нет противоречия с n -м силлогизмом, то не будет противоречия с ( n + 1) – м и не будет такого противоречия никогда. Вы скажете: я вправе сделать такое заключение, потому что целые числа по определению представляют собой такие именно числа, для которых подобное рассуждение законно. Но это приводит к другому определению целого числа, а именно к следующему: целое число есть такое число, о котором можно рассуждать в рекуррентном порядке. В данном случае это – число, о котором можно сказать следующее: если отсутствие противоречия в момент силлогизма, имеющего целый номер, влечет за собой отсутствие противоречия для силлогизма, имеющего следующий целый номер, то нет оснований опасаться противоречия для любого из силлогизмов, имеющего целый номер.

Оба определения не тождественны; они эквивалентны, без сомнения, но они таковы в силу априорного синтетического суждения: нельзя прийти от одного к другому путем чисто логических операций. Мы не вправе, следовательно, принять второе определение, раз мы ввели целое число, следуя такому пути, который предполагает первое определение.

Посмотрим, напротив, как обстоит дело с прямой линией. Я так часто уже говорил об этом, что не решаюсь снова повторять то же самое.

Мы не имеем здесь, как это было в предыдущем случае, двух эквивалентных определений, логически друг к другу несводимых. Мы имеем только одно определение, выраженное словами. Могут сказать, что мы имеем еще другое определение, которое мы чувствуем, но не можем выразить, потому что мы имеем интуицию прямой линии, или потому, что мы представляем себе прямую линию. Но, прежде всего, мы не можем представить себе этой линии в геометрическом пространстве, а можем представить лишь в пространстве, имеющемся в нашем представлении; и затем мы легко можем представить себе объекты, которые обладают всеми другими свойствами прямой линии, кроме того свойства, которое удовлетворяет постулату Евклида. Эти объекты суть «неевклидовы прямые», которые с известной точки зрения отнюдь не являются чем-то, лишенным смысла, но представляют собой окружности (настоящие окружности в настоящем пространстве), ортогональные к определенной сфере. Если из этих объектов, которые мы также можем себе представить, мы считаем прямыми первые, т. е. евклидовы прямые, а не последние, т. е. неевклидовы прямые, то это обусловливается определением.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x