Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Бывают, конечно, и такие случаи, когда математик берется за ту или иную проблему, желая удовлетворить тем или иным требованиям физики; случается, что физик или инженер предлагают математику вычислить какое-нибудь число; которое им нужно знать для того или иного применения. Следует ли отсюда, что все мы, математики, должны ограничиться выжиданием таких требований и, вместо того чтобы свободно культивировать удовольствия, не иметь другой заботы, как применяться ко вкусам нашей клиентуры? Не должны ли математики, имея единственной целью приходить на помощь испытателям природы, только от последних ждать распоряжений? Можно ли оправдать такой взгляд? Конечно, нет! Если бы мы не культивировали точных наук ради них самих, то мы не создали бы математического орудия исследования, и в тот день, когда от физика пришел бы требовательный приказ, мы оказались бы безоружными.

Ведь физики приступают к изучению того или другого явления не потому, что какая-нибудь неотложная потребность материальной жизни сделала это изучение необходимым, и они правы. Если бы ученые XVIII столетия забросили электричество по той причине, что оно в их глазах было только курьезом, лишенным всякого практического интереса, то мы не имели бы в XX столетии ни телеграфа, ни электрохимии, ни электротехники. Будучи вынуждены сделать выбор, физики, таким образом, не руководствуются при этом единственно вопросом полезности. Как же именно поступают они, выбирая среди фактов природы? Нам нетрудно ответить на этот вопрос: их интересуют именно те факты, которые могут привести к открытию нового закона; другими словами, те факты, которые сходны с множеством других фактов, те, которые представляются нам не изолированными, а как бы тесно связанными в одно целое с другими фактами. Отдельный факт бросается в глаза всем – и невежде и ученому. Но только истинный физик способен подметить ту связь, которая объединяет вместе многие факты глубокой, но скрытой аналогией. Анекдот о яблоке Ньютона знаменателен, хотя он, вероятно, и не соответствует истине; будем поэтому говорить о нем как о действительном факте. Но ведь и до Ньютона, надо полагать, немало людей видели, как падают яблоки; а между тем никто не сумел сделать отсюда никакого вывода. Факты остались бы бесплодными, не будь умов, способных делать между ними выбор, отличать те из них, за которыми скрывается нечто, и распознавать это нечто, умов, которые под грубой оболочкой факта чувствуют, так сказать, его душу.

Буквально то же самое проделываем мы и в математике. Из различных элементов, которыми мы располагаем, мы можем создать миллионы разнообразных комбинаций; но какая-нибудь одна такая комбинация, сама по себе, абсолютно лишена значения; нам могло стоить большого труда создать ее, но это ничему не служит, разве что может быть предложено в качестве школьного упражнения. Другое будет дело, когда эта комбинация займет место в ряду аналогичных ей комбинаций, и когда мы подметим эту аналогию, перед нами будет уже не факт, а закон. И в этот день истинным творцом-изобретателем окажется не тот рядовой работник, который старательно построил некоторые из этих комбинаций, а тот, кто обнаружил между ними родственную связь. Первый видел один лишь голый факт, и только второй познал душу факта. Часто для обнаружения этого родства бывает достаточно изобрести одно новое слово, и это слово становится творцом; история науки может доставить нам множество знакомых вам примеров.

Знаменитый венский философ Мах сказал, что роль науки состоит в создании экономии мысли, подобно тому как машина создает экономию силы. И это весьма справедливо. Дикарь считает с помощью своих пальцев или собирая камешки. Обучая детей таблице умножения, мы избавляем их на будущее от бесчисленных манипуляций с камешками. Кто-то как-то узнал, с помощью ли камней или как-либо иначе, что 6 раз 7 составляет 42; ему пришла идея отметить этот результат, и вот благодаря этому мы не имеем больше надобности повторять вычисление сначала. Этот человек не потерял понапрасну своего времени даже в том случае, если он вычислял единственно ради собственного удовольствия; его манипуляция отняла у него не более двух минут, а между тем потребовалось бы целых два миллиарда минут, если бы миллиард людей должен был после него повторять ту же манипуляцию.

Итак, важность какого-нибудь факта измеряется его продуктивностью, т. е. тем количеством мысли, какое он позволяет нам сберечь.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x