В физике фактами большой продуктивности являются те, которые входят в очень общий закон, ибо благодаря этому они позволяют предвидеть весьма большое количество других фактов; то же мы видим и в математике. Я занялся сложным вычислением и, наконец, после большого труда пришел к некоторому результату; я не был бы вознагражден за свой труд, если бы благодаря полученному результату я не оказался в состоянии предвидеть результаты других подобных вычислений и уверенно направлять их, избегая тех блужданий ощупью, на которые я должен был обречь себя в первый раз. И наоборот, мое время не было бы потеряно, если бы эти самые блуждания привели меня к открытию глубокой аналогии изучаемой мною проблемы с гораздо более обширным классом других проблем; если бы благодаря этим блужданиям я узрел одновременно сходства и различия, словом, если бы они обнаружили передо мной возможность некоторого обобщения. Я приобрел бы тогда не новый факт, а новую силу. Простым примером, который раньше других приходит на ум, является алгебраическая формула, которая дает нам решение всех численных задач определенного типа, так что достаточно лишь заменить буквы числами. Благодаря такой формуле алгебраическое вычисление, однажды выполненное, избавляет нас от необходимости повторять без конца все новые и новые численные выкладки. Но это уже очень грубый пример; всем известно, что существуют такие аналогии, которые невозможно выразить какой-либо формулой, а между тем они-то и являются наиболее ценными.
Новый результат мы ценим в том случае, если, связывая воедино элементы давно известные, но до тех пор рассеянные и казавшиеся чуждыми друг другу, он внезапно вводит порядок там, где до тех пор царил, по-видимому, хаос. Такой результат позволяет нам видеть одновременно каждый из этих элементов и место, занимаемое им в общем комплексе. Этот новый факт имеет цену не только сам по себе, но он – и только он один – придает сверх того значение всем старым фактам, связанным им в одно целое. Наш ум так же немощен, как и наши чувства; он растерялся бы среди сложности мира, если бы эта сложность не имела своей гармонии: подобно близорукому человеку, он видел бы одни лишь детали и должен был бы забывать каждую из них, прежде чем перейти к изучению следующей, ибо он не был бы в состоянии охватить разом всю совокупность частностей. Только те факты достойны нашего внимания, которые вводят порядок в этот хаос и делают его, таким образом, доступным нашему восприятию.
Математики приписывают большое значение изяществу своих методов и результатов, и это не просто дилетантизм. Что, в самом деле, вызывает в нас чувство изящного в каком-нибудь решении или доказательстве? Гармония отдельных частей, их симметрия, их счастливое равновесие, – одним словом, все то, что вносит туда порядок, все то, что сообщает этим частям единство, то, что позволяет нам ясно их различать и понимать целое в одно время с деталями. Но ведь именно эти же свойства сообщают решению бо́льшую продуктивность; действительно, чем яснее мы будем видеть этот комплекс в его целом, чем лучше будем уметь обозревать его одним взглядом, тем лучше мы будем различать его аналогии с другими, смежными объектами, тем скорее мы сможем рассчитывать на открытие возможных обобщений. Впечатление изящного может быть вызвано неожиданностью сближения таких вещей, которые мы не привыкли сближать; и в этом случае изящность плодотворна, ибо благодаря ей обнажаются родственные отношения, которых мы не замечали до тех пор; она плодотворна и в том случае, если она обусловливается единственно контрастом между простотой средств и сложностью проблемы; она заставляет нас в этом случае задуматься о причине такого контраста и чаще всего позволяет нам увидеть, что причина не случайна, а таится в том или ином законе, которого мы не подозревали раньше. Одним словом, чувство изящного в математике есть чувство удовлетворения, не скажу, какое именно, но обязанное какому-то взаимному приспособлению между только что найденным решением и потребностями нашего ума; в силу такого именно приспособления найденное решение может служить орудием в наших руках. Следовательно, такое эстетическое удовлетворение находится в связи с экономией мышления. Подобно этому, например, кариатиды Эрехтейона кажутся нам изящными по той причине, что они ловко и, так сказать, весело поддерживают громадную тяжесть и вызывают в нас чувство экономии силы.
Читать дальше
Конец ознакомительного отрывка
Купить книгу