Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вот что оправдывает метод, инстинктивно усвоенный ученым, и, быть может, еще больше его оправдывает то обстоятельство, что факты, которые мы чаще всего встречаем, представляются нам простыми именно потому, что мы к ним привыкли.

Но где же они – эти простые факты? Ученые искали их в двух крайних областях: в области бесконечно большого и в области бесконечно малого. Их нашел астроном, ибо расстояния между светилами громадны, настолько громадны, что каждое из светил представляется только точкой; настолько громадны, что качественные различия сглаживаются, ибо точка проще, чем тело, которое имеет форму и качество. Напротив, физик искал элементарное явление, мысленно разделяя тело на бесконечно малые кубики, ибо условия задачи, которые испытывают медленные непрерывные изменения, когда мы переходим от одной точки тела к другой, могут рассматриваться как постоянные в пределах каждого из этих кубиков. Точно так же и биолог инстинктивно пришел к тому, что он смотрит на клетку как на нечто более интересное, чем целое животное, и этот взгляд в дальнейшем действительно подтвердился, ибо клетки, принадлежащие к самым различным организмам, оказываются гораздо более схожими для того, кто умеет это сходство усматривать, чем самые эти организмы. Социолог находится в более затруднительном положении: люди, которые для него служат элементами, слишком различны между собой, слишком изменчивы, слишком капризны, словом, слишком сложны; и история не повторяется. Как же здесь выбрать интересный факт, т. е. тот, который возобновляется? Метод – это, собственно, и есть выбор фактов; и прежде всего, следовательно, нужно озаботиться изобретением метода; и этих методов придумали много, ибо ни один из них не напрашивается сам собой. Каждая диссертация в социологии предлагает новый метод, который, впрочем, каждый новый доктор опасается применять, так что социология есть наука, наиболее богатая методами и наиболее бедная результатами.

Итак, начинать нужно с фактов, систематически повторяющихся; но коль скоро правило установлено и установлено настолько прочно, что никакого сомнения не вызывает, то те факты, которые вполне с ним согласуются, не представляют уже для нас никакого интереса, так как они уже не учат ничему новому. Таким образом, интерес представляет лишь исключение. Мы вынуждены прекратить изучение сходства, чтобы сосредоточить свое внимание прежде всего на возможных здесь различиях, а из числа последних нужно выбрать прежде всего наиболее резкие, и притом не только потому, что они более всего бросаются в глаза, но и потому, что они более поучительны. Простой пример лучше пояснит мою мысль. Положим, что мы желаем определить кривую по нескольким наблюдаемым ее точкам. Практик, который был бы заинтересован только непосредственными приложениями, наблюдал бы исключительно такие точки, которые были бы ему нужны для той или иной специальной цели; но такого рода точки были бы плохо распределены на кривой; они были бы скоплены в одних областях, были бы разрежены в других, так что соединить их непрерывной линией было бы невозможно, нельзя было бы воспользоваться ими для каких-либо иных приложений. Совершенно иначе поступил бы ученый. Так как он желает изучить кривую саму по себе, то он правильно распределит точки, подлежащие наблюдению, и, как только он их будет знать, он соединит их непрерывной линией и тогда будет иметь в своем распоряжении кривую целиком. Но что же он для этого сделает? Если он первоначально определил крайнюю точку кривой, то он не будет оставаться все время вблизи этой точки, а, напротив, он перейдет прежде всего к другой крайней точке. После двух конечных точек наиболее интересной будет середина между ними и т. д.

Итак, если установлено какое-нибудь правило, то прежде всего мы должны исследовать те случаи, в которых это правило имеет больше всего шансов оказаться неверным. Этим, между прочим, объясняется интерес, который вызывают факты астрономические, а также факты, которые относятся к прошлому геологических эпох. Уходя далеко в пространстве и во времени, мы можем ожидать, что наши обычные правила там совершенно рушатся. И именно это великое разрушение часто может помочь нам лучше усмотреть и лучше понять те небольшие изменения, которые могут происходить вблизи нас, в том небольшом уголке Вселенной, в котором мы призваны жить и действовать. Мы познаем лучше этот уголок, если побываем в отдаленных странах, в которых нам, собственно, нечего делать.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x