Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если ученые, думая так, правы, то можно ли все-таки сказать, что вообще законы природы случайны, хотя каждый закон, взятый в отдельности, может быть признан случайным?

Или же, прежде чем сделать вывод о случайности законов природы вообще, придется поставить требование, чтобы упомянутый мною прогресс имел границу, чтобы ученый в конце концов был остановлен в своем искании все больших приближений и чтобы за известным пределом он встречал в природе один лишь произвол?

С точки зрения, о которой я только что сказал (и которую я назову научной точкой зрения), всякий закон является лишь несовершенной и временной формулировкой; но он должен быть с течением времени заменен другим, более совершенным законом, по отношению к которому он лишь грубое подобие. Поэтому для вмешательства свободной воли не остается места.

Мне кажется, что кинетическая теория газов предоставляет нам поразительный пример.

Известно, что эта теория объясняет все свойства газов при помощи простой гипотезы. Предполагается, что все молекулы в газах движутся с большими скоростями во всех направлениях по прямолинейным путям, которые терпят изменения лишь тогда, когда молекула проходит очень близко от стенок сосуда или от другой молекулы. Те эффекты, которые доступны для наблюдения с помощью наших грубых чувств, суть средние эффекты; в этих средних большие отклонения скомпенсируются; по крайней мере, весьма невероятно, чтобы они не скомпенсировались; поэтому наблюдаемые явления подчинены простым законам, каковы законы Мариотта и Гей-Люссака. Но эта компенсация отклонений является лишь вероятной. Молекулы беспрестанно меняют места, и при этих непрерывных перемещениях образуемые ими фигуры последовательно проходят через все возможные комбинации. Число этих комбинаций чрезвычайно велико; почти все они согласуются с законом Мариотта и только некоторые от него отклоняются. Когда-нибудь реализуются и они; но только этого надо было бы очень долго дожидаться. Если бы мы стали следить за газом в течение достаточно продолжительного времени, то в конце концов, наверное, увидели бы его в течение весьма короткого промежутка времени уклоняющимся от закона Мариотта. Сколько времени пришлось бы этого выжидать? Если бы мы пожелали вычислить вероятное число лет, то оно оказалось бы столь большим, что для одного письменного изображения числа его знаков понадобилось бы около дюжины цифр. Это не важно: для нас достаточно, что оно будет конечным.

Я не хочу обсуждать здесь ценность этой теории. Ясно, что если ее принять, то закон Мариотта будет представляться нам уже только случайным, так как наступит время, когда он больше не будет верным. Однако следует ли думать, что сторонники кинетической теории являются противниками детерминизма? Напротив, это – самые непримиримые из механистов. Их молекулы следуют строго по определенным траекториям, отклоняясь от них лишь под влиянием сил, меняющихся с расстоянием по совершенно определенному закону. В их системе не остается малейшего места ни для свободы, ни для какого-либо фактора эволюции в собственном смысле, ни для чего бы то ни было, подходящего под название случайности. Во избежание недоразумений я добавлю, что здесь нет также эволюции самого закона Мариотта: через какое-то множество веков он перестает быть верным, но спустя какую-то долю секунды он становится опять верным и это – на неисчислимое множество веков.

Надо устранить еще одно недоразумение, связанное со словом «эволюция», которое я употребил. Часто говорят: быть может, законы природы эволюционируют, быть может, откроется, что в каменноугольную эпоху они были не теми, какими они являются сегодня. Что под этим подразумевают? Все, что мы полагаем знать о прошедшем земного шара, мы выводим из его теперешнего состояния. Эти выводы делаются именно при посредстве законов, предполагаемых известными. Закон, как отношение между условием и следствием, одинаково позволяет нам выводить как следствие из условия, т. е. предвидеть будущее, так и условие – из следствия, т. е. заключать от настоящего к прошедшему. Астроном, знающий настоящее положение светил, может при помощи закона Ньютона вывести отсюда будущее их положение (именно это он делает при построении эфемерид), а равно и прошедшее их положение. Вычисления, которые ему придется делать при этом, не могут показать ему, что закон Ньютона когда-нибудь перестанет быть верным, ибо как раз этот закон служит его исходной точкой; точно так же они не могут открыть ему, что закон был неверен в прошедшем. По отношению к будущему его эфемериды еще могут быть когда-нибудь подвергнуты проверке, и наши потомки, быть может, признают, что они были неверны. Но по отношению к прошлому – геологическому прошлому, очевидцев которого не существует, – результаты его вычислений (как вообще результаты всех умозрений, посредством которых мы стремимся вывести прошлое из настоящего) по самой своей природе ускользают от всякого подобия проверки. Поэтому, если законы природы были в каменноугольный период не те, что в современную эпоху, то мы никогда не будем в состоянии это узнать, ибо мы можем узнать об этом периоде только то, что мы выводим из предположения неизменности этих законов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x