Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В таком случае, если мы не будем заходить столь далеко по пути этих странных допущений, если будем воображать лишь существа, обладающие чувствами, аналогичными нашим чувствам, и восприимчивые к тем же впечатлениям, что и мы, а с другой стороны, допускающие принципы нашей логики, то мы можем заключить, что их язык, как бы он ни отличался от нашего, всегда был бы доступен для перевода.

Но возможность перевода означает существование инварианта. Перевести как раз и означает выделить этот инвариант. Подобно этому дешифрировать криптографический документ – значит отыскать то, что остается в этом документе неизменным при перемене его знаков.

Теперь легко понять, какова природа этого инварианта. Это выражается в двух словах. Инвариантные законы суть отношения между голыми фактами, тогда как отношения между «научными фактами» всегда остаются в зависимости от некоторых условных соглашений.

Глава XI. Наука и реальность

5. Случайность и детерминизм

Я не имею в виду рассматривать здесь вопрос о случайности законов природы – вопрос, который, очевидно, неразрешим и о котором уже так много писали.

Я хотел бы лишь обратить внимание на то, сколько различных значений давали слову «случайность» и как было бы полезно отличать эти значения друг от друга.

Рассматривая какой-либо частный закон, мы наперед можем быть уверены, что он является только приближенным. В самом деле, он выведен на основании опытных проверок, а эти последние были и могли быть только приближенными. Надо быть постоянно готовым к тому, что более точные измерения заставят нас добавить к нашим формулам новые члены. Так это было, например, по отношению к закону Мариотта.

Более того, формулировка любого закона неизбежно бывает неполной. Эта формулировка должна была бы включать перечисление всех предшествующих событий, в силу которых происходит данное следствие. Мне следовало бы сначала описать все условия производимого опыта; тогда закон выразился бы так: если все условия выполнены, то будет иметь место такое-то явление.

Но мы лишь тогда можем быть уверены в том, что ни одно из этих условий не забыто нами, если опишем состояние всей Вселенной в момент t : в самом деле, все части этой Вселенной могут оказывать более или менее значительное влияние на явление, которому предстоит произойти в момент t + dt .

Но ясно, что подобное описание не могло бы иметь места в выражении закона; а если бы его и выполнить, то закон стал бы неприменимым; требуя выполнения стольких условий одновременно, мы имели бы весьма малую вероятность того, что в какой-то момент они все осуществятся.

Но раз мы никогда не можем быть уверены в том, что какое-нибудь существенное условие не забыто нами, то мы не будем иметь возможности говорить: «при осуществлении таких-то условий произойдет такое-то явление». Можно только сказать: «вероятно, что при осуществлении таких-то условий произойдет приблизительно такое-то явление».

Возьмем закон тяготения, наименее несовершенный из всех известных законов. Он позволяет нам предвидеть движения планет. Когда я пользуюсь им, например, для вычисления орбиты Сатурна, я пренебрегаю действием звезд и, поступая так, сохраняю уверенность в своей правоте, ибо знаю, что эти звезды слишком удалены, чтобы их действие было ощутимо.

Итак, я заявляю якобы с достоверностью, что в такое-то время координаты Сатурна будут заключаться между такими-то пределами. Однако абсолютна ли эта достоверность?

Разве не может существовать во Вселенной некоторой гипотетической массы, гораздо более значительной, чем все известные звезды, действие которой могло бы стать заметным на больших расстояниях? Положим, что эта масса обладает колоссальной скоростью, и пусть, после того как она обращалась все время на таких расстояниях от нас, что ее влияние до сих пор оставалось для нас незаметным, она вдруг проходит вблизи нас. Она, наверное, произведет в нашей Солнечной системе огромные возмущения, которых мы совершенно не могли бы предвидеть. Все, что можно об этом сказать, это то, что подобный случай совершенно невероятен, и тогда вместо того, чтобы говорить: «Сатурн будет близ такой-то точки неба», мы должны будем ограничиться заявлением: «Сатурн, вероятно, будет вблизи такой-то точки неба». Хотя эта вероятность на практике равносильна достоверности, все же это только вероятность.

На этом основании всякий частный закон всегда будет лишь приближенным и вероятным. Ученые никогда не забывали этой истины; однако они, основательно или нет, верят в то, что всякий закон можно будет заменить другим, более приближенным и более вероятным, что этот новый закон в свою очередь будет лишь временным, но что такой процесс можно будет продолжать бесконечно, так что наука, прогрессируя, будет обладать законами, все более и более вероятными, и, наконец, приближенность и вероятность будут сколь угодно мало отличаться от точности и достоверности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x