Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Переходя к механике, мы видим и здесь великие принципы, имеющие аналогичное происхождение; но так как их «сфера действия» (так сказать) менее значительна, то уже нет оснований отделять их от механики в собственном смысле и рассматривать эту науку как дедуктивную.

Наконец, в физике роль принципов еще более суживается. Действительно, их вводят лишь тогда, когда это бывает выгодно. Но они приносят выгоду как раз только потому, что они малочисленны, потому, что каждый из них заменяет довольно значительное число законов. Поэтому размножать их невыгодно. Кроме того, надо учесть, что здесь в конце концов приходится покидать абстракции, чтобы войти в контакт с реальностью.

Таковы пределы номинализма, и они тесны.

Однако Леруа настойчив, и он ставит вопрос в другой форме.

Так как формулировка наших законов может меняться вместе с соглашениями, которые мы принимаем, и так как эти соглашения могут видоизменять сами естественные отношения этих законов, то существует ли во всей совокупности этих законов нечто такое, что не зависело бы от указанных соглашений и могло бы, так сказать, играть роль универсального инварианта? Можно вообразить, например, существа, которые, получив умственное воспитание в мире, отличном от нашего, приходят к созданию неевклидовой геометрии. Если бы затем эти существа были вдруг перенесены в наш мир, то они наблюдали бы те же законы, что и мы, но выражали бы их совершенно иным способом. Правда, между двумя способами формулировок еще оставалось бы кое-что общее, но это потому, что эти существа еще недостаточно отличны от нас. Можно вообразить существа, еще более странные, и тогда часть, общая двум системам формулировок, будет суживаться все более и более. Может ли она уменьшиться таким образом до нуля, или же окажется несократимый остаток, который тогда и будет искомым универсальным инвариантом?

Надо уточнить постановку вопроса. Хотим ли мы, чтобы эта общая часть содержания могла быть выражена словами? В таком случае ясно, что не существует слов, общих всем языкам, и мы не можем иметь притязаний построить какой-то универсальный инвариант, который был бы в одно время понятен и для нас, и для тех воображаемых неевклидовых геометров, о которых только что шла речь, – точно так же, как нельзя построить фразу, которая была бы понятна сразу немцам, не знающим французского языка, и французам, не знающим немецкого языка. Но у нас есть неизменные правила, позволяющие нам переводить французскую речь на немецкий и обратно. Для этого-то и составляются грамматики и словари. Так же существуют неизменные правила для перевода евклидова языка на неевклидов, и если бы их не было, то их можно было бы составить.

Но даже если бы не существовало ни переводчика, ни словаря и если мы, немцы и французы, прожив века в разделенных друг от друга мирах, вдруг пришли в соприкосновение, можно ли думать, что не оказалось бы ничего общего между наукой немецких книг и наукой книг французских? В конце концов немцы и французы, конечно, стали бы понимать друг друга, подобно тому как американские индейцы поняли язык своих победителей-испанцев.

Но, скажут нам, конечно, французы были бы способны понять немцев, даже не изучая немецкий язык; однако это потому, что между французами и немцами есть нечто общее: те и другие – люди. Так же можно было бы столковаться с нашими гипотетическими неевклидовыми существами (хотя они уже больше не люди), так как они еще сохранили бы нечто человеческое. Но во всяком случае некоторый минимум человеческого необходим.

Возможно, что это так; но я, во-первых, замечу, что небольшой доли человеческих признаков, остающейся у неевклидовых существ, было бы достаточно не только для того, чтобы перевести немногое из их языка, но и чтобы перевести весь их язык.

Что же касается необходимости минимума, то с этим я согласен. Предположим, что существует некоторый флюид, наполняющий промежутки между частицами нашей материи, не оказывающий на последнюю никакого действия и не подвергающийся никакому действию с ее стороны. Допустим, что некоторые существа были бы восприимчивы к воздействию этого флюида и невосприимчивы к воздействию нашей материи. Ясно, что наука этих существ совершенно отличалась бы от нашей, и было бы напрасно искать «инвариант», общий обеим этим наукам. То же самое, если бы эти существа не признавали нашей логики, отрицая, например, принцип противоречия.

Однако, по моему мнению, не представляет интереса углубляться в подобные гипотезы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x