Событие «д» – единственное в нашем списке имеет довольно точно определяемую вероятность, но даже оно зависит от личности победителя. Чтобы выиграть дважды, нужно сначала выиграть в первый раз. Это значит, в первый раз выбрать шесть правильных чисел. Вероятность того, что это произойдет один раз, близка к 0,000000038 – в самом деле, достаточно малое число {36}. Иначе говоря, ваши шансы на выигрыш составляли бы 25 827 164 к 1.
Как это рассчитано? Есть 54 варианта выбора числа. Когда выбрано первое число, оно исключается, т. е. остается 53 возможных варианта для второго числа. Подобным образом для третьего есть 52 варианта, для четвертого – 51, для пятого – 50, для шестого – 49. Поэтому существует 54 × 53 × 52 × 51 × 50 = 18 595 558 800 различных способов выбрать шесть чисел, каждое от 1 до 54. Есть 1 × 2 × 3 × 4 × 5 × 6 = 720 различных способов расположения шести чисел. Поскольку порядок, в котором выбраны числа, значения не имеет, мы делим на 720 и получаем 25 827 165 – число различных возможных вариантов, только один из которых верен.
Вероятность выиграть во второй раз остается такой же; числа в лотерее не обладают способностью к запоминанию, равно как и вероятность. Вероятность, однако, зависит от того, как мы о ней думаем. Если вы забываете о том факте, что выиграли в первый раз, то вероятность не меняется. Ваши шансы составляют 25 827 164 к 1, а вероятность – 0,000000038. Вероятность выиграть во второй раз составляет 0,000000038 × 0,000000038 = 0,000000000000001444, что выглядит очень, очень маловероятно. Мы знаем, что ранее выигравшие числа из следующих лотерей не исключаются и никак на последние не влияют. Однако сам факт выигрыша странным образом такое влияние оказывает, а основано оно на личности победителя. Как преступники возвращаются на место преступления, так победители продолжают играть в лотерею. И делают это, имея полные карманы денег, покупая куда больше билетов, чем раньше. Таким образом, наши расчеты не учитывают всех прочих попыток сыграть в лотерею. Человек мог сыграть 100 раз, прежде чем случился второй выигрыш. В главе 7 (а именно в табл. 7.1) мы найдем шансы на выигрыш в лотерею 4 раза за 4 попытки, что является куда более сложным делом.
Возможен ли математический закон, который откроет нам будущее? После того как пара игральных костей брошена, они «забывают» о том, где и как легли. Если кости «честные» и брошены без жульничества, нельзя заранее сказать, каков будет результат, и все же мы можем быть вполне уверены, что, если бросать кости достаточно долго, 7 будет появляться намного чаще, чем любое другое число. Дело в геометрии игральных костей и простых арифметических правилах: существует больше пар чисел от 1 до 6, в сумме дающих 7, чем любых других пар, которые можно получить в результате броска двух игральных костей.
Математика вероятности – относительно новая область знания. Она зародилась примерно в XVI в. До начала XVI в. математика не занималась неопределенными проблемами. Натурфилософы и математики больше интересовались познанием серьезных вещей, которые для одних могли быть абстрактными понятиями теории чисел и геометрии, для других – более практичными и полезными делами: например, геодезия или другие строительные технологии (в частности, строительство соборов). Само математическое понятие случайного было впервые описано в «Книге об азартных играх» ( Liber de Ludo Aleae) Джероламо Кардано – сборнике работ, содержащих основы понимания природы случайности и того, что мы сейчас называем вероятностью; книга была написана около 1563 г. {37}Но «Книга об азартных играх» оставалась неизданной еще сто лет.
Джероламо Кардано был миланским врачом, математиком и игроком. Наибольшую известность ему принесла его книга «Великое искусство» (Ars Magna) , опубликованная в 1545 г. В ней изложено все, что было известно на тот момент о теории алгебраических уравнений. «Книга об азартных играх» – это 15 страниц бессвязных математических и философских заметок. Кардано не собирался ее публиковать. Но в книге мы находим полезные инструменты для изучения частотности совпадений. Она считается краеугольным камнем теории вероятности, расчетных величин, средних величин, таблиц распределения, свойств сложения вероятностей и различных способов вычисления k успешных испытаний из N – общего числа испытаний. В ней даже содержалось предположение о существовании математического закона, который позже станет известен как слабый закон больших чисел. В общих чертах закон говорит о том, что разность между наблюдаемой вероятностью (которая совершенно не известна до момента наступления событий) и математически вычисленным средним значением p может оказаться сколь угодно малой при условии, что число испытаний N достаточно велико.
Читать дальше
Конец ознакомительного отрывка
Купить книгу