Джозеф Мазур - Игра случая. Математика и мифология совпадения

Здесь есть возможность читать онлайн «Джозеф Мазур - Игра случая. Математика и мифология совпадения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Альпина, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Игра случая. Математика и мифология совпадения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Игра случая. Математика и мифология совпадения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий. Эта книга понравится всем, кто когда-либо задавался вопросом, каким образом маленькие решения, которые мы принимаем в течение жизни, складываются в невероятное целое. Книга обязательна к прочтению любителям математики, а также всем тем, кто стремится понять истинную природу невероятных историй.

Игра случая. Математика и мифология совпадения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Игра случая. Математика и мифология совпадения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Событие «д» – единственное в нашем списке имеет довольно точно определяемую вероятность, но даже оно зависит от личности победителя. Чтобы выиграть дважды, нужно сначала выиграть в первый раз. Это значит, в первый раз выбрать шесть правильных чисел. Вероятность того, что это произойдет один раз, близка к 0,000000038 – в самом деле, достаточно малое число {36}. Иначе говоря, ваши шансы на выигрыш составляли бы 25 827 164 к 1.

Как это рассчитано? Есть 54 варианта выбора числа. Когда выбрано первое число, оно исключается, т. е. остается 53 возможных варианта для второго числа. Подобным образом для третьего есть 52 варианта, для четвертого – 51, для пятого – 50, для шестого – 49. Поэтому существует 54 × 53 × 52 × 51 × 50 = 18 595 558 800 различных способов выбрать шесть чисел, каждое от 1 до 54. Есть 1 × 2 × 3 × 4 × 5 × 6 = 720 различных способов расположения шести чисел. Поскольку порядок, в котором выбраны числа, значения не имеет, мы делим на 720 и получаем 25 827 165 – число различных возможных вариантов, только один из которых верен.

Вероятность выиграть во второй раз остается такой же; числа в лотерее не обладают способностью к запоминанию, равно как и вероятность. Вероятность, однако, зависит от того, как мы о ней думаем. Если вы забываете о том факте, что выиграли в первый раз, то вероятность не меняется. Ваши шансы составляют 25 827 164 к 1, а вероятность – 0,000000038. Вероятность выиграть во второй раз составляет 0,000000038 × 0,000000038 = 0,000000000000001444, что выглядит очень, очень маловероятно. Мы знаем, что ранее выигравшие числа из следующих лотерей не исключаются и никак на последние не влияют. Однако сам факт выигрыша странным образом такое влияние оказывает, а основано оно на личности победителя. Как преступники возвращаются на место преступления, так победители продолжают играть в лотерею. И делают это, имея полные карманы денег, покупая куда больше билетов, чем раньше. Таким образом, наши расчеты не учитывают всех прочих попыток сыграть в лотерею. Человек мог сыграть 100 раз, прежде чем случился второй выигрыш. В главе 7 (а именно в табл. 7.1) мы найдем шансы на выигрыш в лотерею 4 раза за 4 попытки, что является куда более сложным делом.

Глава 5

Дар Бернулли

Возможен ли математический закон, который откроет нам будущее? После того как пара игральных костей брошена, они «забывают» о том, где и как легли. Если кости «честные» и брошены без жульничества, нельзя заранее сказать, каков будет результат, и все же мы можем быть вполне уверены, что, если бросать кости достаточно долго, 7 будет появляться намного чаще, чем любое другое число. Дело в геометрии игральных костей и простых арифметических правилах: существует больше пар чисел от 1 до 6, в сумме дающих 7, чем любых других пар, которые можно получить в результате броска двух игральных костей.

Математика вероятности – относительно новая область знания. Она зародилась примерно в XVI в. До начала XVI в. математика не занималась неопределенными проблемами. Натурфилософы и математики больше интересовались познанием серьезных вещей, которые для одних могли быть абстрактными понятиями теории чисел и геометрии, для других – более практичными и полезными делами: например, геодезия или другие строительные технологии (в частности, строительство соборов). Само математическое понятие случайного было впервые описано в «Книге об азартных играх» ( Liber de Ludo Aleae) Джероламо Кардано – сборнике работ, содержащих основы понимания природы случайности и того, что мы сейчас называем вероятностью; книга была написана около 1563 г. {37}Но «Книга об азартных играх» оставалась неизданной еще сто лет.

Джероламо Кардано был миланским врачом, математиком и игроком. Наибольшую известность ему принесла его книга «Великое искусство» (Ars Magna) , опубликованная в 1545 г. В ней изложено все, что было известно на тот момент о теории алгебраических уравнений. «Книга об азартных играх» – это 15 страниц бессвязных математических и философских заметок. Кардано не собирался ее публиковать. Но в книге мы находим полезные инструменты для изучения частотности совпадений. Она считается краеугольным камнем теории вероятности, расчетных величин, средних величин, таблиц распределения, свойств сложения вероятностей и различных способов вычисления k успешных испытаний из N – общего числа испытаний. В ней даже содержалось предположение о существовании математического закона, который позже станет известен как слабый закон больших чисел. В общих чертах закон говорит о том, что разность между наблюдаемой вероятностью (которая совершенно не известна до момента наступления событий) и математически вычисленным средним значением p может оказаться сколь угодно малой при условии, что число испытаний N достаточно велико.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Игра случая. Математика и мифология совпадения»

Представляем Вашему вниманию похожие книги на «Игра случая. Математика и мифология совпадения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Игра случая. Математика и мифология совпадения»

Обсуждение, отзывы о книге «Игра случая. Математика и мифология совпадения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x