Бенуа Мандельброт - Фрактальная геометрия природы

Здесь есть возможность читать онлайн «Бенуа Мандельброт - Фрактальная геометрия природы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2002, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Фрактальная геометрия природы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Фрактальная геометрия природы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Фрактальная геометрия природы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако всякий раз, когда мы взираем на труды великих людей с высоты тех знаний, которыми они не обладали, уместно будет поразмыслить над замечательным предисловием, которое написал Лебег к одной из книг Лузина. В ответ на то, что автор упомянутой книги приписывал Лебегу всевозможные глубокие мысли, французский математик заявил, что он, безусловно, мог бы — или даже должен был бы — подумать об этом, однако не подумал, а посему автором этих мыслей следует все же считать Лузина. Аналогичный феномен можно наблюдать в книге Уиттекера [591]: автор заявляет, что физическая теория относительности была создана не Эйнштейном, а Пуанкаре и Лоренцем, и приводит в подтверждение цитаты из их трудов; при этом известно, что и Пуанкаре, и Лоренц подчеркнуто отрицали свою к этому причастность.

Кроме того, на каждого ученого, когда-то в прошлом высказавшего мимоходом некую идею, из которой мы можем сегодня получить рабочую теорию, найдется, по меньшей мере, еще один ученый, его современник, который уверенно заявлял, что упомянутая идея совершенно абсурдна. Стоит ли ставить в заслугу Анри Пуанкаре те идеи, которые он в молодости не удосужился разработать, а в зрелом возрасте и вовсе отверг? Если верить Стенту [540], то незрелые идеи, высказанные слишком рано, не заслуживают ничего большего, нежели сострадательное забвение.

Хотя избыточная эрудиция в отношении истории идей сама по себе, как оказывается, довольно бесполезна, мне все же хотелось как-то зафиксировать эти отголоски прошлого, что я и сделал в биографических и исторических очерках в главах 40 и 41.

Однако демонстрация эрудиции автора никоим образом не является главной целью этой книги.

«ВИЖУ - ЗНАЧИТ ВЕРЮ»

В своем письме к Дедекинду, написанном в самом начале кризиса математики 1875 - 1925 гг., Кантор, ошеломленный своими поразительными находками, восклицает, переходя при этом с немецкого на французский, что он не может поверить в то, что он видит («Je le vois, mais je ne le crois pas!»1) И математика, словно бы поняв намек с полуслова, принимается усердно избегать обманчивых и искусительных ликов чудовищ. Какой контраст между безудержной вычурностью до- и контрреволюционной геометрии и практически полным отсутствием какого бы то ни было визуального сопровождения в работах Вейерштрасса, Кантора и Пеано! Аналогичный оборот приняли дела и в физике — после того, как в 1800 г. вышла в свет «Небесная механика» Лапласа без единой иллюстрации. Как выразился П. А. М. Дирак в предисловии к изданной в 1930 г. «Квантовой механике», «фундаментальные законы природы управляют мирозданием не так непосредственно, как мы себе это воображаем; они воздействуют на некий субстрат, о котором мы не можем создать для себя никакого представления, не исказив всей картины привнесением в нее наших собственных неуместных добавлений».

Широкое и некритичное приятие таких взглядов принесло в конечном счете немало неприятностей. Теория фракталов, как никакая другая, требует обратного подхода: «Вижу — значит верю.» Поэтому, прежде чем вы продолжите чтение, еще раз рекомендую некоторое время по- разглядывать иллюстрации, особенно те, что вошли в цветную «книгу в книге». Я строил свое эссе таким образом, чтобы его содержимое оказалось доступным (пусть и в различной степени) самому широкому кругу читателей; кроме того, в нем я пытаюсь убедить даже самых отъявленных пуристов от математики в том, что качественные иллюстрации не только помогают разобраться в уже известных понятиях, но и незаменимы при поиске новых концепций и создании новых теорий. Не так уж часто встретишь в современной научной литературе подобную веру в полезность графики.

Однако демонстрация красивых картинок не является главной целью этой книги; иллюстрации — это чрезвычайно полезный инструмент, но и только.

Следует также помнить о том, что любая попытка проиллюстрировать геометрию заведомо обречена на провал. Например, прямая обладает бесконечной длиной и гладкостью, а также бесконечно малой толщиной — в то время как любое изображение этой прямой имеет конечную длину, положительную толщину и неровные края. Тем не менее, многие считают, что созерцание грубого подобия прямой весьма полезно (некоторые даже полагают, что совершенно необходимо) для развития интуиции и облегчает нахождение решений и доказательств. Заметим, что грубое изображение прямой представляет собой более адекватную геометрическую модель, скажем, нити, чем сама идеальная математическая прямая. Иными словами, для практического использования вполне достаточно, чтобы и геометрическая концепция, и ее изображение были заключены между некоторыми определенными значениями характеристических размеров — большим, но конечным (внешний порог), и меньшим, но положительным (внутренний порог).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Фрактальная геометрия природы»

Представляем Вашему вниманию похожие книги на «Фрактальная геометрия природы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Фрактальная геометрия природы»

Обсуждение, отзывы о книге «Фрактальная геометрия природы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x