Айзек Азимов - Числа - от арифметики до высшей математики

Здесь есть возможность читать онлайн «Айзек Азимов - Числа - от арифметики до высшей математики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: Эксмо, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Числа: от арифметики до высшей математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Числа: от арифметики до высшей математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Знаменитый фантаст и популяризатор науки сэр Айзек Азимов в этой книге решил окунуть читателя в магию чисел Свой увлекательный рассказ Азимов начинает с древнейших времен, когда человек использовал для вычислений пальцы, затем знакомит нас со счетами, а также с историей возникновения операций сложения, вычитания, умножения и деления Шаг за шагом, от простого к сложному, используя занимательные примеры, автор ведет нас тем же путем, которым шло человечество, совершенствуя свои навыки в математике.

Числа: от арифметики до высшей математики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Числа: от арифметики до высшей математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Очевидно, если вы разделите единицу на три части, а потом сложите снова все эти три части, вы получите первоначальное число, то есть единицу. Другими словами, 3/3 = 1, и это выражение соответствует нашему определению дроби, то есть 3 : 3 = 1.

Точно так же 2/2, 4/4, 27/27, 109476/109476 равны единице.

А что, если нам надо 1/3 умножить на 4? Мы получим ответ 4/3, а что означает такое выражение? Дробь 4/3 может быть представлена в виде 1 + 1/3. или 1 1/ 3, или одна целая и одна треть.

В школе учеников обычно приучают к тому, чтобы выделять максимально возможную целую часть из дроби. То есть превращать 4/3 в 1 1/ 3, 27/5 в 5 2/ 5и так далее. Однако делать это преобразование не всегда необходимо. На самом деле арифметические действия с 4/3 и 27/5 производить удобнее, чем с 1 1/ 3и 5 2/ 5.

По существу, в большинстве случаев стремление выделить целую часть дроби вызвано только природным консерватизмом, а не соображениями целесообразности.

Дроби, меньшие 1, то есть дроби, у которых числитель меньше знаменателя, называют правильными дробями. И наоборот, дроби, у которых числитель больше знаменателя, называют неправильными, то есть даже название этих дробей имеет оттенок неодобрения.

Тем не менее не следует забывать, что действия со всеми дробями производят по одним и тем же правилам. И с математической точки зрения и те и другие дроби равным образом правильные.

Знаменатель вступает в игру

Рассмотрим дробь 6/3. Ее величина равна 2, так как 6/3 = 6 : 3 = 2.

А что произойдет, если числитель и знаменатель умножить на 2? 6/3 × 2 = 12/6. Очевидно, величина дроби не изменилась, так как 12/6 также равно 2. Можно умножить числитель и знаменатель на 3 и получить 18/9, или на 27 и получить 162/81, или на 101 и получить 606/303. В каждом из этих случаев величина дроби, которую мы получаем, разделив числитель на знаменатель, равна 2. Это означает, что величина дроби не изменилась.

Такая же закономерность наблюдается и в случае других дробей. Если числитель и знаменатель дроби 120/60 (равной 2) разделить на 2 (результат 60/30), или на 3 (результат 40/20), или на 4 (результат 30/15) и так далее, то в каждом случае величина дроби остается неизменной и равной 2.

Это правило распространяется также на дроби, которые не равны целому числу.

Если числитель и знаменатель дроби 1/3 умножить на 2, мы получим 2/6, то есть величина дроби не изменилась. И в самом деле, если вы разделите пирог на 3 части и возьмете одну из них или разделите его на 6 частей и возьмете 2 части, вы в обоих случаях получите одинаковое количество пирога. Следовательно, числа 1/3 и 2/6 идентичны.

Сформулируем общее правило. Числитель и знаменатель любой дроби можно умножить или разделить на одно и то же число, и при этом величина дроби не изменяется. Это правило оказывается очень полезным. Например, оно позволяет в ряде случаев, но не всегда, избежать операций с большими числами.

Например, мы можем разделить числитель и знаменатель дроби 126/189 на 63 и получить дробь 2/3, с которой гораздо проще производить расчеты. Еще один пример.

Числитель и знаменатель дроби 155/31 можем разделить на 31 и получить дробь 5/1, или 5, поскольку 5 : 1 = 5.

В этом примере мы впервые встретились с дробью, знаменатель которой равен 1. Такие дроби играют важную роль при вычислениях. Следует помнить, что любое число можно разделить на 1 и при этом его величина не изменится. То есть 273/1 равно 273; 509993/1 равно 509993 и так далее. Следовательно, мы можем не разделять числа на целые и дробные, поскольку каждое целое число можно представить в виде дроби со знаменателем 1.

С такими дробями, знаменатель которых равен 1, можно производить те же арифметические действия, что и со всеми остальными дробями: 15/1 + 15/1 = 30/1; 4/1 × 3/1 = 12/1.

Вы можете спросить, какой прок от того, что мы представим целое число в виде дроби, у которой под чертой будет стоять единица, ведь с целым числом работать удобнее. Но дело в том, что представление целого числа в виде дроби дает нам возможность эффективнее производить различные действия, когда мы имеем дело одновременно и с целыми, и с дробными числами.

Сначала умножим числитель и знаменатель дроби 1/3 на 5. Получим 5/15, величина дроби не изменилась. Затем умножим числитель и знаменатель дроби 1/5 на 3. Получим 3/15, опять величина дроби не изменилась. Следовательно,

1/3 + 1/5 = 5/15 + 3/15 = 8/15.

Теперь попробуем применить эту систему к сложению чисел, содержащих как целую, так и дробную части.

Нам надо сложить 3 + 1/3 + 1 1/ 4. Сначала переведем все слагаемые в форму дробей и получим: 3/1 + 1/3 + 5/4. Теперь нам надо привести все дроби к общему знаменателю, для этого мы числитель и знаменатель первой дроби умножаем на 12, второй — на 4, а третьей — на 3. В результате получаем 36/12 + 4/12 + 15/12, что равно 55/12. Если вы хотите избавиться от неправильной дроби, ее можно превратить в число, состоящее из целой и дробной частей:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Числа: от арифметики до высшей математики»

Представляем Вашему вниманию похожие книги на «Числа: от арифметики до высшей математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Числа: от арифметики до высшей математики»

Обсуждение, отзывы о книге «Числа: от арифметики до высшей математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x