Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1840-е гг. на этот текст, вернувшийся к тому моменту обратно в Константинополь и находившийся в греческой православной библиотеке, наткнулся библеист Константин фон Тишендорф. Он вынул из книги один лист и поместил его в библиотеку Кембриджского университета. В 1899 г. Афанасий Пападопуло-Керамевс, составляя каталог библиотечных рукописей, частично перевел этот лист. Гейберг понял, что текст принадлежит Архимеду, и проследил судьбу книжной страницы обратно до Константинополя, где ему разрешили сфотографировать весь документ. Затем он переписал текст и издал результаты своей работы между 1910 и 1915 гг., а Томас Хит перевел текст на английский язык. После сложной цепочки событий, включая продажу на аукционе, осложненную судебной тяжбой по поводу права собственности на документ, рукопись была продана анонимному американцу за $2 млн. Новый владелец предоставил ее для исследований, так что затертый текст восстановлен с применением различных цифровых технологий обработки изображений.

Чтобы доказывать теорему методом исчерпывания, нужно заранее знать ответ, и ученые долгое время гадали, как Архимед сумел угадать правила определения площади поверхности и объема сферы. Трактат «О методе» поясняет:

Действительно, кое-что из того, что ранее было мною усмотрено при помощи механики, позднее было также доказано и геометрически, так как рассмотрение при помощи этого метода еще не является доказательством; однако получить при помощи этого метода некоторое предварительное представление об исследуемом, а затем найти и само доказательство гораздо удобнее, чем производить изыскания, ничего не зная [2] Архимед. Сочинения. – М.: Физматлит, 1962. .

Архимед мысленно уравновешивает шар, цилиндр и конус на весах, а затем нарезает их бесконечно тонкими ломтиками, которые перераспределяет таким образом, чтобы сохранить баланс. Затем он применяет закон рычага, чтобы соотнести три объема между собой (объемы цилиндра и конуса был уже известны), и выводит требуемые величины. Существуют предположения, что именно Архимед первым использовал настоящие бесконечно малые величины в математике. Возможно, мы усматриваем слишком много в этом не самом вразумительном документе, но ясно, что трактат «О методе» предвосхищает некоторые идеи дифференциального исчисления.

* * *

Другие труды Архимеда наглядно показывают, насколько разнообразными были его интересы. Трактат «О спиралях» доказывает некоторые фундаментальные утверждения о длинах и площадях, связанных с Архимедовой спиралью – кривой, которую описывает точка, движущаяся с постоянной скоростью вдоль прямой линии, вращающейся с постоянной скоростью. Трактат «О коноидах и сфероидах» исследует объемы сегментов объемных тел, образованных вращением конических сечений вокруг некоторой оси.

Трактат «О плавающих телах» – первая в истории работа по гидростатике и равновесным позициям плавающих объектов. В него входит и закон Архимеда: на тело, погруженное в жидкость, действует выталкивающая сила, равная весу жидкости, вытесненной этим телом. Этот принцип является темой знаменитого исторического анекдота, в котором Архимеда просят придумать метод, при помощи которого можно определить, действительно ли обетная корона, изготовленная для царя Гиерона, сделана из золота. Идея решения осеняет Архимеда внезапно, когда он принимает ванну, и он приходит в такой восторг, что выскакивает на улицу, позабыв одеться, и несется по городу в чем мать родила с криком «Эврика!» («Нашел!»). Не забывайте, что появление нагого человека в публичном месте в Древней Греции не рассматривалось как скандальное событие. Кульминацией книги является условие устойчивого плавания параболоида – предтеча фундаментальных идей теории кораблестроения, связанных с остойчивостью и переворачиванием судов.

В «Измерении круга» метод исчерпывания применяется для доказательства того, что площадь круга равна длине половины радиуса, умноженной на длину окружности, – π r 2в современных терминах. Чтобы доказать это, Архимед вписывает в окружность и описывает вокруг нее правильные многоугольники с 6, 12, 24, 48 и 96 сторонами. Рассматривая девяностошестиугольник, он доказывает результат, эквивалентный, по существу, оценке величины π: он попадал в промежуток между Значимые фигуры Жизнь и открытия великих математиков - изображение 5

«Исчисление песчинок» адресовано Гелону II, тирану Сиракуз и сыну Гиерона II. Это подкрепляет предположение о том, что Архимед был в родстве с царской семьей. Он так объясняет свою цель:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x