Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кантор был религиозен и стремился примирить математику со своей верой. Природа бесконечного в те времена все еще была очень прочно увязана с религией, поскольку христианский Бог считался бесконечным и утверждалось, что Он есть единственная и неповторимая реальная бесконечность. Замечание Кронекера о целых числах вовсе не было метафорой. И тут появляется Кантор и заявляет, что в математике тоже есть актуальные бесконечности… Ну вы можете представить себе, что после этого должно было произойти. Однако Кантор дал достойный ответ, заявив: «Трансфинитная разновидность ровно в той же мере соответствует намерениям Создателя… как и конечные числа». Это был умный довод, поскольку отрицать его означало бы утверждать, что Бог имеет какие-то ограничения, что уже смахивало на ересь. Кантор даже написал об этом папе Льву XIII и направил ему несколько математических статей. Бог знает, что папа об этом подумал.

* * *

Математики понимали, что делает Кантор. Гильберт признавал значимость его работы и хвалил ее. Но с возрастом Кантор почувствовал, что теория множеств не произвела того эффекта, на который он надеялся. В 1899 г. у него случился приступ депрессии. Он вскоре оправился, но потерял веру в себя. Он написал Йосте Миттаг-Леффлеру: «Не знаю, когда я вернусь к продолжению научной работы. В настоящее время я абсолютно ничего не могу с ней делать». Пытаясь бороться с депрессией, он отправился на отдых в горы Гарц и попытался примириться со своим академическим противником Кронекером. Кронекер отреагировал на это положительно, но отношения между ними так и остались натянутыми.

Математика держала Кантора в напряжении: он страдал, что не может доказать свою континуум-гипотезу. В какой-то момент он думал, что сумел ее опровергнуть, но быстро нашел ошибку в рассуждениях; затем ему показалось, что он сумел-таки доказать ее, но и в этом доказательстве обнаружилась ошибка. В этот момент Миттаг-Леффлер попросил Кантора отозвать статью из журнала Acta Mathematica , хотя дело уже дошло до верстки, – и не потому, что статья была неверна, а потому, что она «опередила время лет на сто». Кантор отреагировал на это с юмором, но внутренне был очень обижен. Он перестал писать Миттаг-Леффлеру, перестал интересоваться его журналом – и вообще практически оставил теорию множеств.

Его депрессия проявлялась, как правило, двояким образом. С одной стороны, он начинал усиленно интересоваться философскими следствиями из теории множеств. Другим ее проявлением была убежденность Кантора в том, что все работы Шекспира на самом деле были написаны Фрэнсисом Бэконом. Эта навязчивая идея заставила его серьезно изучить литературу Елизаветинского времени, и к 1896 г. он начал публиковать брошюры о своей любимой теории. Затем за короткий промежуток времени умерли мать Кантора, его младший брат и младший сын. В нем все сильнее проявлялись признаки душевного расстройства, и в 1911 г., когда Университет Св. Андрея в Шотландии пригласил Кантора в качестве почетного гостя на празднование 500-летия университета, он большую часть времени посвятил рассуждениям о Бэконе и Шекспире. Депрессия стала его постоянным спутником. Некоторое время в связи с этим он провел в лечебнице, и в 1918 г. умер в санатории от сердечного приступа.

* * *

Ирония судьбы заключается в том, что Миттаг-Леффлер был, по существу, прав, когда говорил Кантору, что тот на столетие опередил свое время, хотя, возможно, прав не в том смысле, который сам имел в виду. Несмотря на то что идеи Кантора постепенно завоевывали признание, самого значительного влияния теории множеств на математику пришлось ждать до 1950-х или 1960-х гг., когда наблюдался расцвет абстрактного подхода к математике, продвигавшегося группой ученых, называвших себя Никола Бурбаки. Влияние Бурбаки на математическое образование с тех пор (к счастью) спало, но убеждение входивших в группу математиков в том, что математические понятия должны определяться точно и как можно более обобщенно, держится до сих пор. А базисом для точности и общности является позиция, которую обеспечивают любимые множества Георга Кантора. Сегодня любая область математики, хоть теоретической, хоть прикладной, прочно опирается на формальные положения теории множеств. Не только философски, но и практически. Без языка множеств математики сегодня не смогли бы даже обозначить, о чем, собственно, идет речь.

Так что вот приговор потомков: да, к теории множеств и трансфинитным числам действительно есть философские вопросы, но они ничем не лучше и не хуже аналогичных философских вопросов к целым числам, которые так любил Кронекер. Они тоже дело рук человеческих, а дело рук человеческих редко бывает лишено недостатков. По иронии судьбы мы сегодня определяем целые числа при помощи… теории множеств. И рассматриваем Кантора как одного из истинных чудаков и оригиналов математики. Если бы он не придумал теорию множеств, со временем это сделал бы кто-то другой, но прошел бы, вполне возможно, не один десяток лет, прежде чем нашелся бы еще один человек с таким же редким сочетанием мощи, глубины и интуиции.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x