Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Общий вывод таков: натуральное число представляет собой сумму двух квадратов в том, и только том случае, если все простые множители вида 4 k + 3 появляются в нем в четных степенях при разложении числа на простые множители. К примеру, 245 = 5 × 7 2. Множитель 7 имеет вид 4 k + 3, но появляется при разложении дважды, то есть входит в число в четной степени; следовательно, 245 представляется в виде суммы двух квадратов. В самом деле, 245 = 14 2+ 7 2. Наоборот, 35 = 5 × 7, и множитель 7 появляется здесь лишь однажды, так что 35 не выражается в виде суммы двух квадратов. Этот результат может показаться случайной, ни с чем не связанной диковинкой, но именно от него взяли начало несколько линий исследований, приведшие в конечном итоге к созданию масштабной теории квадратичных форм Гаусса (глава 10). В наше время эту линию рассуждений провели намного дальше. Родственная теорема, доказанная Лагранжем, утверждает, что любое натуральное число представляет собой сумму четырех квадратов (квадрат 0 = 0 2разрешен). Это утверждение тоже имеет важные и обширные следствия.

* * *

История Великой теоремы Ферма рассказана многократно и рассказывается по сей день, но я не стану извиняться за то, что расскажу ее еще раз. Это замечательная история. То, что слава Ферма зиждется на теореме, которую он почти наверняка не доказал, можно назвать иронией судьбы. Он заявил , что нашел доказательство, и сегодня мы знаем, что теорема действительно верна, но вердикт истории состоит в том, что методами, доступными ему в то время, доказать ее невозможно. Его утверждение о том, что доказательство найдено, существовало лишь в виде рукописного замечания на полях книги, которая к тому же не уцелела и до нас не дошла; вполне возможно, что оно было сделано преждевременно. В математических исследованиях нередко случается, что, проснувшись поутру, человек уверен, что доказал во сне что-то важное, но к полудню, когда автор находит ошибку, это доказательство испаряется.

Книга, о которой идет речь, – французский перевод «Арифметики» Диофанта, первой значительной работы по теории чисел, если не считать «Начал» Евклида, где изложены многие базовые свойства простых чисел и решены некоторые важные уравнения. В любом случае «Арифметика» – первый специализированный труд на эту тему. Не забывайте, что именно эта книга ввела в математику технический термин «диофантово уравнение» для обозначения полиномиального уравнения, которое следует решать в натуральных или рациональных числах. Диофант составил систематический каталог таких уравнений, и один из центральных образцов его коллекции – уравнение x 2+ y 2= z 2для пифагоровых троек, называемых так потому, что треугольник со сторонами x, y и z , по теореме Пифагора, будет прямоугольным. Простейшее решение этого уравнения в ненулевых целых числах – это 3 2+ 4 2= 5 2, знаменитый треугольник со сторонами 3–4–5. Вообще, решений бесконечное множество: Евклид привел процедуру, позволяющую найти их все; Диофант включил этот метод в свою книгу.

У Ферма имелся экземпляр перевода «Арифметики» на латинский язык, сделанного Клодом Баше де Мезирьяком в 1621 г., и свои замечания к тексту он записывал на полях. По словам сына Ферма Самюэля, Великая теорема была сформулирована как замечание к Вопросу VIII Книги II у Диофанта. Мы знаем об этом потому, что Самюэль издал собственный вариант «Арифметики», включив туда и примечания отца. Даты, когда делались примечания, неизвестны, но известно, что Ферма начал изучать «Арифметику» около 1630 г. Часто приводится дата 1637 г., но это лишь интуитивная оценка. Предполагается, что именно после размышлений о потенциальных обобщениях Пифагоровых треугольников Ферма и написал свою знаменитую маргиналию:

Невозможно поделить куб на два куба, или четвертую степень на две четвертых степени, или, в общем, любую степень выше второй на две такие же степени. Я нашел поистине чудесное доказательство этого, но здешние поля слишком узки, чтобы вместить его.

То есть диофантово уравнение x n+ y n= z n не имеет целых решений, если n – целое число, большее или равное трем.

Имеются косвенные свидетельства того, что со временем Ферма отказался от мысли о том, что владеет доказательством. Он имел обыкновение включать свои теоремы в письма в качестве головоломок, которые другим математикам предлагалось решить (и по крайней мере один из них жаловался на чрезмерную сложность заданий). Однако ни в одном из сохранившихся его писем не упоминается эта теорема. Что еще более показательно, Ферма предложил в качестве задач своим корреспондентам два ее частных случая, с кубами и четвертыми степенями. Зачем бы он стал это делать, если бы мог доказать более общий вариант? Он наверняка мог доказать теорему для случая с кубами, и мы знаем, как он доказывал ее для четвертых степеней. Мало того, это доказательство – единственное во всех оставленных им работах и бумагах. В формулировке Ферма это утверждение выглядело так: «Площадь прямоугольного треугольника не может быть квадратом». Очевидно, по замыслу автора эта формулировка должна была вызывать в памяти Пифагоровы тройки. Из Евклидова алгоритма решения диофантовых уравнений легко следует, что эта задача эквивалентна нахождению двух квадратов, дающих в сумме четвертую степень. Если бы решение уравнения x 4+ y 4= z 4с показателем степени 4 существовало, то и x 4, и y 4были бы квадратами ( xy 2соответственно); тогда из утверждения Ферма следует, что такого решения не существует.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x