Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Его «Введение в изучение плоских и пространственных мест» 1629 г. стало новаторским; в нем впервые использовались координаты, позволившие связать геометрию и алгебру. Обычно эту идею приписывают Декарту и его эссе «Геометрия» 1637 г. (приложение к «Рассуждению о методе»), но на самом деле намеки на нее можно найти в гораздо более ранних произведениях, вплоть до древнегреческих. Смысл идеи заключается в использовании двух координатных осей для представления любой точки на плоскости посредством единственной пары чисел ( x, y ). Сегодня этот метод настолько привычен, что едва ли требует особого обсуждения.

В рассуждении «О касательных к кривым» 1679 г. Ферма находил касательные к различным кривым, то есть занимался геометрической версией дифференциального исчисления. Его метод нахождения максимума и минимума был еще одним предвестником математического анализа. В оптике он сформулировал принцип наименьшего времени: световой луч следует по тому пути, который минимизирует общее время движения. Это был один из первых шагов к вариационному исчислению – области анализа, которая занимается поиском кривых или поверхностей, минимизирующих или максимизирующих некоторую величину. К примеру, какая замкнутая поверхность фиксированного объема имеет наименьшую площадь поверхности? Ответ – сфера; именно поэтому мыльные пузыри имеют сферическую форму, ведь энергия поверхностного натяжения пропорциональна площади поверхности, а пузырь принимает форму, соответствующую минимальной энергии.

В аналогичном ключе Ферма полемизировал с Декартом по поводу закона преломления световых лучей. Декарт, раздраженный, вероятно, тем, что лавры за геометрические координаты достались оппоненту, хотя сам он считал координаты своим изобретением, отозвался критикой в адрес работы Ферма о максимумах, минимумах и касательных. Диспут получился настолько жарким, что в него в качестве арбитра оказался втянут инженер и геометр-новатор Жерар Дезарг. Когда он объявил, что прав Ферма, Декарт неохотно признал: «Если бы вы объяснили это таким образом с самого начала, я бы и возражать не стал».

* * *

Величайшее наследие Ферма относится к теории чисел. В его письмах можно найти множество вызовов для математиков. Среди них предложение доказать, что сумма двух полных кубов не может быть полным кубом; решить уравнение, получившее неудачное название «уравнение Пелля», nx 2+ 1 = y 2, где n – заданное натуральное число, а найти нужно натуральные числа x и y . Леонард Эйлер ошибочно приписал решение, найденное лордом Брукнером, Джону Пеллю. На самом же деле метод его решения содержится еще в трактате «Брахма-спхута-сиддханта» – «Усовершенствованное учение Брахмы» Брахмагупты, – относящемся к 628 г.

Одна из важнейших и красивейших теорем Ферма говорит о числах, которые можно выразить в виде суммы двух полных квадратов. Альберт Жерар впервые сформулировал утверждение по этой теме в работе, опубликованной посмертно в 1634 г. Ферма первым заявил, что нашел доказательство, написав об этом в письме к Мерсенну в 1640 г. Главное – решить эту задачу для простых чисел. Ответ зависит от типа простого числа в следующем смысле. Единственное четное простое число – 2. Нечетные числа представляют собой либо кратные 4 с добавлением единички, либо кратные 4 с добавлением 3 (то есть имеют вид 4 k + 1 или 4 k + 3). То же, разумеется, относится и к нечетным простым числам. Ферма доказал, что 2 и все простые числа вида 4 k + 1 представляют собой суммы двух квадратов; с другой стороны, простые числа вида 4 k + 3 не выражаются через сумму двух квадратов.

Если немного поэкспериментировать, об этом несложно догадаться. К примеру, 13 = 4 + 9 = 2 2+ 3 2, и 13 = 4 × 3 + 1. С другой стороны, 7 = 4 × 1 +3 и ясно, что сумма двух квадратов не может равняться 7. Однако доказать теорему Ферма о двух квадратах очень трудно. Простейшая часть – показать, что простые числа вида 4 k + 3 не являются суммой двух квадратов; я покажу вам, как это сделать, в главе 10 при помощи фокуса, который Гаусс придумал для систематизации базового метода теории чисел. Показать, что простые числа вида 4 k + 1 выражаются в виде суммы двух квадратов, намного сложнее. Доказательство Ферма до нас не дошло, но известны доказательства, сделанные с использованием доступных ему методов. Первое известное нам доказательство дал Эйлер; он объявил о нем в 1747 г., а опубликовал в двух статьях в 1752 и 1755 гг.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x