Хаос в том смысле, в котором используют это слово математики и физики, никоим образом не исключает возможности стабильности. Более того, он даже гарантирует некоторые виды стабильности, хотя и не в том смысле, который знаком нам по повседневной жизни.
Математики и физики считают систему хаотической, если она обладает следующими тремя свойствами:
1. Состояние системы определяется малым числом переменных (от пяти до десяти), причем очень простым образом.
2. Система чрезвычайно чувствительна к малым изменениям начального состояния.
3. На некотором этапе развития система оказывается сколь угодно близка ко всем состояниям, которых она теоретически может достичь, хотя и не обязательно достигнет каждого из возможных состояний.
Как и все математические утверждения, эти три условия изложены здесь слишком сжато, чтобы их можно было понять без дальнейших объяснений. Рассмотрим их несколько подробнее, чтобы понять, что можно считать хаосом, а что нельзя.
Первое условие отражает то наблюдение, что даже очень простые уравнения могут иметь чрезвычайно сложные решения. Примером такой ситуации служит двойной маятник: хотя его движение можно описать тремя простыми уравнениями, маятник может двигаться по чрезвычайно сложной траектории. Суть математического хаоса в том и заключается, что он может быть порожден необычайно простыми, и даже полностью детерминированными, условиями.
Второе условие — это другая формулировка «эффекта бабочки». Отличительным свойством хаотических систем является то обстоятельство, что малые отклонения, как правило, не сглаживаются, а усиливаются системой. Поэтому даже при наличии уравнений движения хаотической системы (например, двойного маятника) мы не можем предсказать, в какое состояние эта система в конце концов придет, потому что в системах реального мира невозможны абсолютно точные измерения и любые начальные значения, которые мы вводим в уравнения движения, неизбежно отличаются — пусть даже на ничтожно малую величину — от значений истинных, а даже мельчайшие отклонения начальных значений порождают по мере развития системы огромные различия.
Третье условие говорит нам, что хаос не равен полному беспорядку. Случайный шум — например, радиопомехи или возмущения воды в бурной реке — не есть хаотическая система. Радиопомехи абсолютно случайны, в хаосе же нет ничего случайного. Хаос кажется в высшей степени иррегулярным, но далеко не все то, что кажется «хаотичным», действительно хаотично. Третье условие добавляет и еще кое-что. Когда двойной маятник качается, его траектория оставляет на бумаге плотный клубок каракулей и рано или поздно подходит сколь угодно близко ко всем точкам, которых она может достигнуть. Но при этом эта траектория подчиняется простому принципу конструкции маятника; в ней нет ничего случайного! Таким образом, третье условие означает также, что хаотическая система в конце концов заполняет все предоставленное ей пространство, в том смысле, что в области действия системы нет ни одного участка, на который система рано или поздно не проникнет, каким бы малым он ни был. В некотором смысле можно сказать, что хаос осуществляет принцип, утверждающий, что природа не терпит пустоты.
В таком, формальном, смысле слова хаос не есть состояние полной неразберихи. Именно в этом на самом деле и состоит его суть: система, проявляющая хаотические с математической точки зрения свойства, выглядит хаотической, но подчиняется простому набору правил. Существуют структуры и еще более сложные, чем хаос. Я только назову их: броуновское движение, турбулентность, вихревое течение. Эти в высшей степени сложные структуры не считаются хаотическими. Возможно, самое интересное свойство хаоса — это его теоретическая простота.
Математики и физики часто испытывают неприязнь к чрезмерно сложным системам, в особенности потому, что даже простые системы часто бывают неразрешимыми. У природы такой неприязни не бывает. Природа ничего не пытается решить. В природном мире объекты просто возникают в соответствии с законами физики, химии и биологической эволюции, и природа решает, какие из них в итоге выживут, а какие — исчезнут, не спрашивая, не слишком ли сложной оказалась та или иная структура.
Структура человеческого мозга в значительной степени определяется информацией, закодированной в ДНК, и, хотя наш мозг содержит гораздо больше переменных, чем те пять или десять, которых требует первое условие хаоса, тем не менее в самом мозге этих переменных заключено на много порядков меньше, нежели в том количестве информации, что необходимо для его описания. Природа истолковывает первое условие в гораздо более крупном масштабе, чем математики и физики, и тысячи генов, в которых закодированы правила, необходимые для построения мозга человека, — это, по меркам природы, «небольшое» число переменных. Можно представить себе, как естественному отбору удалось создать столь невероятно сложную структуру, определенную таким сравнительно небольшим числом переменных, даже если математиков или физиков перспектива работы с таким огромным их количеством привела бы в ужас.
Читать дальше
Конец ознакомительного отрывка
Купить книгу