Наум Виленкин - В поисках бесконечности

Здесь есть возможность читать онлайн «Наум Виленкин - В поисках бесконечности» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1983, Издательство: Наука, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

В поисках бесконечности: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «В поисках бесконечности»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ.
В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых.
Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.

В поисках бесконечности — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «В поисках бесконечности», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Выводы Зенона об отсутствии движения в реальном мире опровергались повседневным опытом. Известный философ-киник Диоген [10] Диоген Самосский (ок. 414-323 до н. э.) -древнегреческий философ. , услышав про рассуждения Зенона, просто встал и начал ходить (этому происшествию посвящено известное стихотворение А. С. Пушкина "Движенья нет, сказал мудрец брадатый..."). Тем не менее аргументы Зенона показали, что представления о бесконечности, господствовавшие в тогдашней математике, были весьма наивны. В частности, Зенон впервые показал, что отрезок можно разложить на бесконечное множество частей, каждая из которых имеет ненулевую длину. Если заменить геометрический отрезок конечным отрезком времени, то из его рассуждений вытекало еще более парадоксальное утверждение: за 1 час можно произнести названия всего бесконечного ряда натуральных чисел. Для этого достаточно в течение первого получаса назвать первое число, в течение следующей четверти часа — второе число, за следующую восьмую долю часа — третье число и т. д. Получалось, что бесконечное можно поместить в конечном — бесконочный числовой ряд в конечном промежутке времени.

Разумеется, реальное осуществление такой попытки невозможно — ведь уже число 100 придется произносить за 2 -100часа, а самый быстрый из процессов, известных современной науке, длится неизмеримо дольше. Достичь такой быстроты невозможно и потому, что никакая информация не может передаваться со скоростью, большей, чем скорость света, а при попытке делить пространство на все более мелкие части начинают проявляться его квантовые свойства. Но ведь все это соображения, лежащие в области свойств реального мира, а Зенон, как мы бы теперь сказали, исследовал одну из математических моделей этого мира, модель, в которой допускалось неограниченное деление пополам и отрезков, и промежутков времени, так что для него доводы физиков роли не играли.

Па протяжении веков много раз менялось отношение к апориям Зенона. Иногда казалось, что они полностью опровергнуты, но внимательный анализ показывал, что на каждом уровне знаний всегда остается что-то невыясненное, какой-то зародыш новых трудностей, новых противоречий и нового знания. Известный специалист по теории бесконечных множеств и основаниям математики А. Френкель [11] Френкель Абрагам (1891-1965) немецкий математик, автор работ по математической логике. писал по этому поводу:

"Преодоление пропасти между областью дискретного и областью непрерывного, или между арифметикой и геометрией, есть одна из главных,- пожалуй, даже самая главная проблема оснований математики... Характер рассуждений теперь, конечно, изменился, но трудности, как и прежде, возникли в связи с пропастью между дискретным и непрерывным — этим неизменным камнем преткновения, играющим в то же время чрезвычайно важную роль в математике, философии и даже физике".

Позднее мы познакомимся с другими парадоксами бесконечного , по сравнению с которыми апории Зенона могут показаться весьма наивными. Но известный советский философ Г. И. Наан [12] Наан Густав Иоганович (р. 1919) — советский философ, занимающийся философскими проблемами естествознания. заметил, что, возможно, человечество никогда не сможет опровергнуть элейского философа на все сто процентов, поскольку бесконечность неисчерпаема, а Зенону удалось схватить в наивной, но гениальной форме три вечные проблемы, тесно связанные друг с другом и с проблемой бесконечности: проблему ничто, проблему непрерывности и проблему существования. Не случайно Аристотель называл Зенона "основателем диалектики", а Гегель видел в нем родоначальника диалектики в современном смысле слова.

Не обошлось, конечно, и без попыток использовать апории Зенона на пользу идеализма. Один видный немецкий философ-идеалист сказал даже, что в этих апориях бесконечность выступает как растворитель действительности.

Мы не будем сейчас подробнее останавливаться на роли апорий Зенона в физике и философии.

Для математики их роль состояла в том, что они вскрыли противоречивость дискретного и непрерывного, показали недопустимость легкомысленного обращения с бесконечностью. После Зенона нельзя уже было по примеру софиста Антифонта [13] Антифонт (2-я половина V в. до н. э.) — древнегреческий философ-софист. считать круг многоугольником с бесконечным числом сторон и таким путем вычислять его площадь. Началась эпоха изгнания бесконечного из математики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «В поисках бесконечности»

Представляем Вашему вниманию похожие книги на «В поисках бесконечности» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «В поисках бесконечности»

Обсуждение, отзывы о книге «В поисках бесконечности» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x