Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Здесь есть возможность читать онлайн «Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Corpus, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Эта странная математика. На краю бесконечности и за ним: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Эта странная математика. На краю бесконечности и за ним»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Эта странная математика. На краю бесконечности и за ним», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Напомним, что значит “счетный”: это попросту последовательность или множество, элементы которых можно посчитать, пронумеровать. Иными словами, “счетным” мы вправе назвать то, из чего можно составить последовательность, пусть и не обязательно упорядоченную привычным образом. Иногда для этого требуется некоторая перестановка, как в случае с отелем Гильберта. Поскольку все натуральные числа счетные, алеф-ноль, то есть мощность множества натуральных чисел, называют счетно-бесконечным кардинальным числом. Ему соответствует наименьший бесконечный счетный ординал ω , а также бесконечно много других счетно-бесконечных ординалов. Существование этого бесконечного количества счетных ординалов обусловлено тем, что в случае порядковых чисел существенную роль, как подсказывает их название, играет порядок элементов, а потому между ординалами требуется проводить более тонкое различие, чем между кардинальными числами. Несмотря на это, все счетные ординалы, начиная с ω и дальше, включая числа эпсилон и остальные, соответствуют одному и тому же кардинальному числу – алеф-нулю. Но вот с переходом к алефу-один все разительно меняется. Алеф-один не только неописуемо больше, чем алеф-ноль, он еще и несчетный . Ему соответствует наименьший несчетный ординал: омега-один ( ω 1).

Мы уже говорили, что алеф-один – это размер множества счетных ординалов, но можно ли его описать как-то по-другому? С алефом-ноль все понятно: это мощность множества натуральных чисел. А нельзя ли и алефу-один поставить в соответствие что-нибудь знакомое, доступное для понимания? Кантор считал, что можно. Он утверждал, что алеф-один идентичен общему количеству точек на математической прямой, которое, как он установил, в свою очередь, равно количеству точек на плоскости (как бы невероятно это ни звучало) или в пространстве любой другой размерности. Эта бесконечность пространственных точек, называемая континуумом и обозначаемая буквой c , является также множеством всех действительных чисел (включающим в себя все рациональные числа плюс все иррациональные). Действительные числа, в отличие от натуральных, сосчитать невозможно. Предположим, вас спросили бы, какое число следует в ряду действительных чисел за 357. Как бы вы ни тасовали действительные числа, какими бы способами ни пытались их пронумеровать, все равно останутся те, что вы никогда не сумеете сосчитать, даже если заниматься этим вечно.

Кантор выдвинул предположение, получившее известность как “континуум-гипотеза”. Согласно ей, c равно алефу-один, или, другими словами, не существует бесконечного множества с мощностью, занимающей промежуточное положение между мощностями множества натуральных чисел и множества действительных чисел. Однако, несмотря на все старания, Кантору так и не удалось ни доказать, ни опровергнуть свою гипотезу. Сегодня мы уже знаем почему – и ответ на этот вопрос расшатывает самые основы математической науки.

В 1930-х годах ученый-логик австрийского происхождения Курт Гёдель доказал, что континуум-гипотезу невозможно опровергнуть исходя из стандартных аксиом теории множеств. Для этого он построил систему, состоящую из однозначно определенных множеств, – “конструктивный универсум” – и доказал, что все аксиомы внутри нее выполняются, а континуум-гипотеза истинна (хотя из этого и не следует, что конструктивный универсум – единственная такая система). Три десятилетия спустя американский математик Пол Коэн доказал, что и подтвердить истинность континуум-гипотезы в той же системе аксиом тоже невозможно. Иными словами, в рамках привычной для математиков системы эта гипотеза имела неопределенный статус. Возможность возникновения подобной ситуации была предсказана еще в знаменитой теореме Гёделя о неполноте, о которой мы говорили в пятой главе. Она гласит, что в любой достаточно сложной системе аксиом, если она полна, существуют утверждения, которые невозможно ни доказать, ни опровергнуть (мы еще поговорим об этом подробнее, когда вернемся к теореме о неполноте в последней главе). И тем не менее факт независимости континуум-гипотезы заставил математиков понервничать, поскольку то был первый конкретный пример, когда важный для науки вопрос невозможно было разрешить, пользуясь общепринятой системой аксиом, на которой построена вся математика.

Споры о том, верна ли континуум-гипотеза и даже есть ли в ней вообще смысл, не утихают среди математиков и философов до сих пор. Что же касается характера различных видов бесконечности, да и самого существования бесконечных множеств, здесь все зависит от того, какой теорией чисел пользоваться. Разные аксиомы и правила дают разные ответы на вопрос “Что же лежит за пределами всех целых чисел?”. Из-за этого довольно трудно, а то и просто бессмысленно сравнивать различные виды бесконечности и пытаться определить их относительный размер, хотя в пределах конкретной системы чисел бесконечности обычно можно без труда расположить в четком порядке.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Эта странная математика. На краю бесконечности и за ним»

Представляем Вашему вниманию похожие книги на «Эта странная математика. На краю бесконечности и за ним» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Эта странная математика. На краю бесконечности и за ним»

Обсуждение, отзывы о книге «Эта странная математика. На краю бесконечности и за ним» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x