Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Здесь есть возможность читать онлайн «Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Corpus, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Эта странная математика. На краю бесконечности и за ним: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Эта странная математика. На краю бесконечности и за ним»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Эта странная математика. На краю бесконечности и за ним», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кстати, стоит упомянуть любопытное открытие, сделанное в 1996 году исследователями Дэвидом Бэйли, Питером Боруэйном и Саймоном Плаффом. Им удалось найти довольно простую формулу – сумму бесконечного ряда членов, – с помощью которой можно вычислить любой знак числа пи, не зная ни одного предыдущего знака . (Строго говоря, вычисляемые по формуле Бэйли – Боруэйна – Плаффа знаки не десятичные, а шестнадцатеричные, то есть представлены по основанию 16.) На первый взгляд это кажется невозможным, да и для других математиков стало полным сюрпризом. Но еще больше поражает другое: для того чтобы вычислить с помощью этого метода, к примеру, миллиардный знак числа пи, достаточно обычного ноутбука и совсем немного времени – меньше, чем на обед в ресторане. Разные варианты формулы Бэйли – Боруэйна – Плаффа могут использоваться для поиска других “иррациональных” чисел, подобных пи, с десятичными знаками, что убегают вдаль бесконечной цепочкой, нигде не повторяясь.

Есть ли в чистой математике вообще хоть что-нибудь истинно случайное – вопрос не праздный. Случайность предполагает полное отсутствие упорядоченности и предсказуемости. Непредсказуемым можно назвать только то, что неизвестно, и только при условии, что нет никаких оснований считать один из возможных исходов вероятнее другого. Математика, по сути дела, существует вне времени; другими словами, она не меняется, не эволюционирует от одного момента к другому. Единственное, что меняется, – это наши знания о ней. Физический же мир изменяется непрерывно, причем эти изменения часто кажутся нам непредсказуемыми. Вращение подброшенной монеты мы считаем достаточно непредсказуемым, чтобы использовать этот метод для выбора одного из двух существующих решений. На деле же степень случайности зависит от того, какой информацией мы располагаем. Если бы нам были известны сила и угол броска, скорость вращения монеты, сопротивление воздуха и так далее, мы сумели бы (теоретически) точно предсказать, какой стороной вверх она упадет. То же касается и падения бутерброда с маслом, разве что в этом случае у нас имеются еще и научные данные, подтверждающие точку зрения пессимистов – чаще он падает маслом вниз. Эксперименты показали, что если бутерброд подбросить вверх (такое, конечно, может произойти только в лаборатории или в школьной столовой), то вероятность его приземления маслом вниз составляет 50 %. Но вот если его смахивают со стола или он соскальзывает с тарелки, тогда он действительно чаще падает намазанной стороной вниз. Причина проста: случайное падение обычно происходит с высоты примерно уровня пояса плюс-минус сантиметров тридцать и у бутерброда как раз достаточно времени, чтобы сделать пол-оборота, поэтому если полет начинается из традиционного положения “маслом вверх”, то закончится он, скорее всего, жирным пятном на полу.

Большинство физических систем гораздо сложнее падающего бутерброда. К тому же некоторые еще и хаотичны, а это значит, что даже незначительное вмешательство в начальные условия может привести к последствиям огромного масштаба на более позднем этапе. Одна из таких систем – погода. До появления современных метеопрогнозов оставалось лишь гадать, что день грядущий нам готовит. Метеоспутники, чувствительные наземные приборы и мощные компьютеры совершили настоящую революцию в метеорологии, позволив давать точный прогноз на период до 7–10 дней. Но при попытке заглянуть дальше даже самые передовые методики и высокотехнологичное оборудование наталкиваются на непреодолимый барьер – сложность и хаотичность системы, включая так называемый эффект бабочки: представление о том, что ничтожное колебание воздуха, вызванное взмахом крыльев бабочки, способно, постепенно усиливаясь, превратиться в страшный ураган.

Ураган Феликс сфотографированный с Международной космической станции 3 - фото 7

Ураган “Феликс”, сфотографированный с Международной космической станции 3 сентября 2007 года.

Даже при всей сложности системы может показаться, что любым явлением, будь то вращение подброшенной монеты или климат на планете, руководят одни и те же законы природы, и законы эти детерминированы. Когда-то считалось, что вселенная устроена наподобие гигантского часового механизма – фантастически сложного, но совершенно предсказуемого. Такое представление неверно по двум причинам. Первая связана опять-таки со сложностью. Даже внутри детерминированной системы – то есть такой, в которой исход зависит от ряда событий, а каждое из событий можно предсказать, точно зная предыдущее состояние системы, – задача может быть настолько сложной, что узнать заранее, чем все закончится, просто нереально. В таких системах даже самая совершенная и быстродействующая модель (например, компьютерная) не способна “обогнать” само явление. Это касается систем не только физических, но и чисто математических – таких, например, как клеточные автоматы. О самой известной из таких моделей – игре “Жизнь”, придуманной Джоном Конвеем, – мы еще поговорим подробнее в пятой главе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Эта странная математика. На краю бесконечности и за ним»

Представляем Вашему вниманию похожие книги на «Эта странная математика. На краю бесконечности и за ним» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Эта странная математика. На краю бесконечности и за ним»

Обсуждение, отзывы о книге «Эта странная математика. На краю бесконечности и за ним» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x