Но мы говорим о третьем конгрессе, который состоялся в 1904 г. в Гейдельберге. Кантор сидел в зале вместе со своими дочерьми. На сцену вышел венгерский математик Дьюла Кёниг, который заявил, что в теории Кантора содержатся фундаментальные ошибки. Кантора глубоко потрясло то унижение, которому он подвергся на глазах у коллег и собственных дочерей. На самом деле Кёниг пренебрег важнейшим правилом математики – точностью; уже на следующий день математик Эрнст Цермело {26} 26 Цермело также был автором важной шахматной теории, которую кое-кто считает первой теоремой в теории игр. Я рассказывал об этом в книге «Гладиаторы, пираты и игры на доверии» (Watkins, 2017). (Русское издание вышло в московском изд-ве «КоЛибри» в конце 2020 г. – Примеч. ред. )
, один из отцов – основателей теории множеств, доказал, что Кёниг был неправ и нес вздор. Но это ничуть не облегчило эмоционального состояния Кантора.
В 1913 г. Кантор оставил работу в университете; во время Первой мировой войны он жил в ужасающей бедности. Умер он в 1918 г. в санатории в Галле.
В начале XX в. еще существовали острые разногласия относительно значения теории Кантора и ее справедливости. Тем не менее в 1904 г. Кантор был награжден медалью Сильвестра, высшей наградой для математиков, которую присуждает Лондонское королевское общество. Она названа так в честь английского математика Джеймса Джозефа Сильвестра. По иронии судьбы предыдущим лауреатом этой награды был непримиримый соперник Кантора Анри Пуанкаре [40] Пуанкаре, получивший медаль Сильвестра в 1901 г., был, собственно, первым ее лауреатом.
.
Математика – это музыка логики.
Джеймс Джозеф Сильвестр
В число наиболее пылких поклонников Кантора входили Бертран Рассел (1872–1970) {27} 27 Рассел также был удостоен медали Сильвестра (в 1934 г.). Кроме того, в 1958 г. он получил Нобелевскую премию по литературе. Насколько мне известно, Рассел – единственный человек, получивший обе эти престижные награды.
и Давид Гильберт, который назвал теорию множеств Кантора «величайшим произведением математического гения и человеческой мысли».
Никто не изгонит нас из того рая, который создал для нас Кантор.
Давид Гильберт
Рай Кантора – это рай для дураков. Его теория смехотворна и совершенно бессмысленна.
Людвиг Витгенштейн
Очевидно, даже величайшие философы иногда несут чушь.
Моя теория прочна как скала; любая стрела, выпущенная в нее, быстро вернется к своему лучнику. Почему я в этом уверен? Потому что я изучал ее со всех сторон на протяжении многих лет; потому что я исследовал все возражения, которые когда-либо выдвигались против бесконечных чисел; а прежде всего потому, что я проследил, так сказать, ее корни до исходной и несомненной первопричины всего сотворенного.
Георг Кантор
Сегодня значение теории множеств Кантора очевидно всем тем, кто имеет дело с высшей математикой. Современные варианты теории множеств, развившиеся в результате его первопроходческих исследований, служат теперь основой значительного числа математических теорий, разработанных в XX в.
Пора и нам познакомиться с теорией множеств Георга Фердинанда Людвига Филиппа Кантора.
Введение в теорию множеств. Что такое множество?
В этом и следующих разделах мы попытаемся понять центральные идеи канторовой теории множеств. Начнем с самого фундаментального понятия – множества. Что такое «множество»?
Вот интуитивное определение, которое служило математикам на самой заре эпохи теории множеств:
ОПРЕДЕЛЕНИЕ МНОЖЕСТВА
Любой набор объектов.
Это определение кажется слишком общим. В нем даже нет требования, чтобы у объектов, составляющих множество, было нечто общее. Поэтому неудивительно, что со временем это определение породило немало проблем.
Как можно определить множество? Один из способов сводится к перечислению всех входящих в него объектов. Например, А = {Густав Малер, Густав Климт, Гюстав Эйфель, Густав Холст, Густаво Дудамель, Гюстав Доре, Густаво Бокколи, Гюстав Курбе, ураган «Густав», Густав V Шведский}. В этом множестве ровно десять элементов, и у всех этих элементов есть одно общее свойство – наличие слова «Густав» в той или иной форме.
Но общих черт может и не быть. Вот другой пример совершенно добропорядочного множества: B = {1729, a, 4, {4}, Пушкин, Пушкаш, $, множество}. Это попросту множество из восьми, по-видимому, случайных объектов, перечисленных выше.
Читать дальше
Конец ознакомительного отрывка
Купить книгу