Но как можно доказать факт такого масштаба? Как можно доказать, что каким бы ни было множество выбранных аксиом (если рассуждения проверяются алгоритмически), то всегда найдется истина, недоказуемая на их основе? Сейчас мы перейдем к объяснению доказательства и для этого рассмотрим, шаг за шагом, основные моменты рассуждений Гёделя.
Ханс Хан, руководитель докторской диссертации Гёделя. Этот австрийский философ и математик внес значительный вклад в формирование Венского кружка.
Немецкий математик Филипп Фуртвенглер, преподаватель Гёделя в Венском университете.
Курт Гёдель в 1935 году, через пять лет после защиты докторской диссертации в Венском университете.
ОБЩАЯ ИДЕЯ ДОКАЗАТЕЛЬСТВА
Предположим, что в качестве аксиом были выбраны некоторые истинные арифметические высказывания. Для начала заметим: тот факт, что аксиомы — это истинные утверждения, гарантирует истинность всех высказываний, которые можно будет доказать на их основе, поскольку из истинных предпосылок (при правильных методах рассуждения) можно сделать только истинные выводы. Это гарантирует, что ни одно доказываемое высказывание не будет ложным, однако это ни в коем случае не означает, что все истины доказуемы. Действительно, наша цель — доказать, что существует истинное арифметическое высказывание, которое не может быть доказано на основе этих аксиом (если мы будем придерживаться методов доказательства программы Гильберта).
Главная идея доказательства состоит в том, чтобы получить высказывание G, в котором будет говориться: "G недоказуемо". Другими словами, G может быть записано так: "Это утверждение недоказуемо".
Высказывание G самореферентно и говорит о самом себе, что оно недоказуемо (в дальнейшем слово "доказуемый" всегда должно пониматься как "доказуемый на основе предложенных аксиом"). Докажем, что это высказывание G является недоказуемой истиной.
Для начала заметим, что G либо истинно, либо ложно. Если бы G было ложно, в связи с тем, что в G говорится о самом себе, можно было бы сделать вывод, что G доказуемо. Следовательно, G было бы одновременно ложным и доказуемым, но это невозможно (ведь мы сказали, что исходя из истинных аксиом можно доказать только истинные высказывания). Следовательно, G не может быть ложным.
Следовательно, G истинно, и согласно тому, что оно говорит о самом себе, оно недоказуемо. Так мы делаем вывод, что G — истинное и недоказуемое высказывание (см. схему).
ЧИСЛА И УТВЕРЖДЕНИЯ
Предыдущая идея, хотя и правильная в целом, имеет одну проблему: G должно быть арифметическим утверждением. Но арифметические высказывания относятся к свойствам натуральных чисел, в них не говорится о других высказываниях и тем более о самих себе. Как мы можем преодолеть это ограничение и сделать так, чтобы арифметическое высказывание относилось к другому высказыванию? Если в высказываниях говорится о числах, а нам надо, чтобы в них говорилось о других утверждениях, то нужно приравнять числа к утверждениям:
Числа ↔ Утверждения.
Требуется связать с каждым арифметическим высказыванием какое-нибудь натуральное число так, чтобы замечание об этом числе было равносильно замечанию о соответствующем утверждении. Например, если бы утверждению соответствовало число 457, мы могли бы считать, что в любом высказывании, в котором речь идет о 457, одновременно речь идет о Р.
Теперь каждому арифметическому высказыванию назначим число, которое назовем числом Гёделя, или его кодом. Назначение чисел Гёделя происходит специфическим способом, который можно запрограммировать для компьютера, однако для того, чтобы в общих чертах понять идею доказательства теоремы о неполноте, нет необходимости углубляться в технические детали. Примеры, которые мы приведем далее, чисто гипотетические и служат только для того, чтобы проиллюстрировать общее понятие. Представим, что:
"4 = 2 + 2" ↔ код 67
"2 — четное число" ↔ код 223
Читать дальше