Владимир Успенский - Апология математики (сборник статей)

Здесь есть возможность читать онлайн «Владимир Успенский - Апология математики (сборник статей)» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Альпина, Жанр: Математика, Публицистика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Апология математики (сборник статей): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Апология математики (сборник статей)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этот сборник вошли статьи разных лет российского математика и лингвиста Владимира Андреевича Успенского, ученика великого Колмогорова, существенно переработанные и дополненные. Очерчивая место математики в современной культуре, автор пытается прояснить для читателей-нематематиков некоторые основные понятия и проблемы «царицы наук».

Апология математики (сборник статей) — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Апология математики (сборник статей)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Когда знаменитого педиатра доктора Спока спросили, с какого возраста следует воспитывать ребёнка, он, узнав, что ребёнку полтора месяца, ответил: «Вы уже опоздали на полтора месяца». Не следует ли способность отличать осмысленное от бессмысленного и истинное от ложного неназойливо прививать уже с начальных классов школы? И не является ли это главным в школьном преподавании?

Надо сказать, что квалификация высказывания как ложного, бессмысленного или непонятного, как правило, требует некоторого усилия – иногда почти героического. Как же так, уважаемый человек что-то говорит или пишет, а ты осмеливаешься его не понимать или, поняв, возражать? Не все и не всегда способны на такое усилие.

XVI

Способность к усилию, о котором только что говорилось, вырабатывается (во всяком случае должна вырабатываться) на уроках математики и при общении с математиками. Дело в том, что математика – наука по природе своей демократическая. На её уроках воспитывается (а при косвенном воздействии – прививается) демократизм.

Внешние формы такого демократизма произвели большое впечатление на автора этих строк в его первые студенческие годы, когда в конце 1940-х гг. он стал обучаться на знаменитом мехмате – механико-математическом факультете Московского университета. Если почтенный академик обнаруживал, что выступающий вслед за ним студент собирается стереть с доски им, академиком, написанное, он с извинениями вскакивал с места и стирал с доски сам. Для профессора мехмата было естественно самому написать и вывесить объявление, но не для профессора гуманитарного факультета.

Эти внешние проявления косвенно отражают глубинные различия. Ведь математическая истина не зависит от того, кто её произносит – академик или школьник. При этом академик может оказаться неправ, а школьник – прав.

Реакция Колмогорова на третьекурсника, опровергнувшего его на лекции, была такова: он пригласил студента к себе на дачу, там покатался с ним на лыжах, накормил обедом и взял себе в ученики.

С горечью приходится признать, что подобный демократизм имеет свои издержки, на что указывает Андрей Анатольевич Зализняк:

Мне хотелось бы высказаться в защиту двух простейших идей, которые прежде считались очевидными и даже просто банальными, а теперь звучат очень немодно.

1. Истина существует, и целью науки является её поиск.

2. В любом обсуждаемом вопросе профессионал (если он действительно профессионал, а не просто носитель казённых титулов) в нормальном случае более прав, чем дилетант.

Им противостоят положения, ныне гораздо более модные:

1. Истины не существует, существует лишь множество мнений (или, говоря языком постмодернизма, множество текстов).

2. По любому вопросу ничьё мнение не весит больше, чем мнение кого-то иного. Девочка-пятиклассница имеет мнение, что Дарвин неправ, и хороший тон состоит в том, чтобы подавать этот факт как серьёзный вызов биологической науке [19] Зализняк А. А. Похвала филологии. М., 2007. С. 79. А также: Зализняк А. А. Из заметок о любительской лингвистике. М., 2009. С. 210. .

Чем наука дальше от математики, чем она, так сказать, гуманитарнее, тем сильнее убедительность того или иного высказывания начинает зависеть от авторитета высказывающего лица. На гуманитарных факультетах подобная персонализация истины ещё недавно ощущалась довольно сильно. «Это верно, потому что сказано имяреком» или даже «Это верно, потому что сказано мною» – такие категорические заявления, высказанные в явной или чаще неявной форме, не столь уж редки в гуманитарных науках. (И имярек в первой фразе, и первое лицо во второй фразе обычно относились как раз к одному из тех «носителей казённых титулов», о которых говорит Зализняк.)

В естественных науках и в математике подобные заявления невозможны. Впрочем, в тоталитарном обществе принцип верховенства мнения того, кто на должность авторитета назначен властью, применялся с печальными последствиями и к естественным наукам – достаточно вспомнить лысенковщину. Проживи Сталин дольше, возможно, изменению подверглась бы и таблица умножения. Предпринимались же попытки отменить теорию относительности.

Нет в математике и «царского пути». Здесь я ссылаюсь на известную историю, то ли подлинную, то ли вымышленную, которую одни рассказывают про великого математика Архимеда и сиракузского царя Гиерона, другие про великого математика Евклида и египетского царя Птолемея.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Апология математики (сборник статей)»

Представляем Вашему вниманию похожие книги на «Апология математики (сборник статей)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Апология математики (сборник статей)»

Обсуждение, отзывы о книге «Апология математики (сборник статей)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x