XIV
Вернёмся, однако, к тому, чем математика может быть полезна всем, в частности гуманитариям.
Воспитываемая на уроках математики дисциплина мышления помогает в числе прочего отчетливо разграничивать и различать истину и ложь (в вышеуказанном – математическом – значении последнего слова), доказанное и всего лишь гипотетическое, ведь нигде эти различия не проявляются с такой чёткостью, как в математике.
Автору очень хочется сказать, что математика – единственная наука, где достигается абсолютная истина, но он всё же на это не решается, так как подозревает, что абсолютная истина не достигается нигде.
В любом случае математические истины ближе к абсолютным, чем истины других наук. Поэтому математика – наилучший полигон для тренировки на истину. Истина – основной предмет математики.
Духовная культура состоит не столько в знаниях, сколько в нормах. Нормы проявляются прежде всего в противопоставлениях. Эстетика учит нас противопоставлению между прекрасным и безобразным, высоким и низким. Этика – между должным и недолжным, между нравственным, моральным и безнравственным, аморальным. Юриспруденция – между законным, правовым и незаконным, неправовым. Логика – между истинным и ложным.
Но логика сама по себе не создаёт истин. Её законы носят условный характер: если то-то и то-то истинно, то неизбежно истинно то-то и то-то. (Точно так же теория вероятностей не назначает и не может назначать вероятности того или иного события, а лишь указывает, как по одним вероятностям вычислять другие. Например, она не утверждает, что при подбрасывании монеты выпадение двух орлов подряд имеет вероятность одна четвёртая; она утверждает лишь, что если при одном броске выпадение орла имеет вероятность одна вторая и если результаты бросков не зависят друг от друга, то выпадение двух орлов подряд имеет вероятность одна четвёртая.) Знаменитый силлогизм про смертность бедного Кая не утверждает, что Кай смертен, а утверждает лишь, что если все люди смертны и если Кай – человек, то и он, Кай, смертен.
Истину же поставляют конкретные науки, в том числе математика. Кажется, это ставит математику на одну доску с другими науками. Но нет, это не так: её и только её истины могут претендовать на приближение к абсолюту, и они если не «совершенно», то «почти» абсолютны.
Приходится, однако, признать – математику со вздохом, гуманитарию с удовлетворением, – что в этой приближённости математических истин к абсолютным состоит некоторая ограниченность математики. Потому что тот мир, который дан нам в ощущениях, более адекватно отображается скорее в истинах, достаточно далёких от абсолютных.
Даже почитавшиеся незыблемыми законы Ньютона оказались пригодны лишь для сравнительно узкой полосы между микро- и макромирами, а вне этой полосы они требуют замены законами теории относительности.
Что уж говорить о так называемых прописных истинах гуманитарной сферы, будь то истины моральные или эстетические, которые с трудом поддаются, а то и вообще не поддаются оценке в терминах «верно» и «неверно».
XV
Казалось бы, что может быть важнее и первичнее, чем умение отличать истинные высказывания от высказываний ложных? Однако ещё более важным, ещё более первичным является умение отличать осмысленные высказывания от бессмысленных.
Вот характерный пример бессмысленного высказывания: «Рассмотрим совокупность всех слов, имеющих хотя бы одну общую букву». Это заявление бессмысленно, поскольку такой совокупности не существует. В самом деле, «рот» и «сыр» имеют общую букву «р» и потому должны принадлежать этой совокупности. Слово «око» должно принадлежать этой совокупности, поскольку имеет общую букву со словом «рот», и не должно ей принадлежать, поскольку не имеет общих букв со словом «сыр».
Мы потому назвали пример характерным, что подобные псевдоконструкции, ничего на самом деле не конструирующие, были довольно типичны для литературы по языкознанию несколько десятилетий назад. Возникало даже парадоксальное удовлетворение, когда некоторое утверждение можно было квалифицировать всего лишь как ложное. Чувство удовлетворения возникало потому, что ложность утверждения свидетельствовала о его осмысленности.
Преподавателю-математику, ведущему диалог со студентом-гуманитарием, зачастую приходится просить студента вдуматься в то, что тот только что сказал, и затем спрашивать, понимает ли студент, чтó сказал. Не столь уж редко честные студенты, поразмыслив, в некоторой растерянности признаются, что не понимают.
Читать дальше
Конец ознакомительного отрывка
Купить книгу