Авинаш Диксит - Стратегические игры

Здесь есть возможность читать онлайн «Авинаш Диксит - Стратегические игры» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Стратегические игры: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Стратегические игры»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Стратегические игры», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Б. Выигрыши

На вопрос, какова цель участника игры, большинство новичков в области стратегического мышления отвечают: выиграть. Однако далеко не всегда все так просто. Порой весомое значение имеет уровень победы. Например, если при разработке нового продукта ваш вариант оказывается лишь чуточку лучше, чем у конкурентов, велика вероятность того, что ваш патент могут оспорить. Иногда могут быть и более мелкие призы для нескольких участников игры, а значит, победа — это еще не все. Самое важное, что стратегических игр исключительно с нулевой суммой, или тех, в которых одна сторона выигрывает, а другая проигрывает, совсем мало. Как правило, они сочетают в себе элементы как общего интереса, так и конфликта между игроками. Анализ таких игр со смешанными мотивами требует более точных расчетов, чем простая дихотомия «выигрыш/проигрыш», например сравнения выгоды от сотрудничества с выгодой от отказа от него.

Мы предоставим в распоряжение каждого игрока полноценную числовую шкалу, с которой он сможет сравнивать все логически допустимые исходы игры, отвечающие каждой возможной комбинации вариантов выбора стратегий всеми игроками. Число, соответствующее каждому возможному исходу игры, называется выигрышемигрока для данного исхода. Более высокое значение выигрыша соотносится с результатом, который считается лучшим в системе оценок этого игрока.

Иногда выигрыш представляет собой простой численный рейтинг исходов игры, в котором самый худший исход имеет рейтинг 1, следующий — рейтинг 2 и так далее вплоть до лучшего исхода. В других играх может быть более естественная числовая шкала — например, денежный доход или прибыль компаний, доля зрителей телевизионных сетей и т. д. Зачастую величина выигрыша — всего лишь эмпирическая оценка. В таких случаях необходимо убедиться, что итоги анализа существенно не изменятся в результате изменения этих оценок в рамках допустимого предела погрешности.

В отношении выигрышей нужно четко понимать два важных момента. Во-первых, выигрыш одного игрока охватывает все аспекты исхода игры, представляющие для него интерес. В частности, игроку необязательно быть эгоистом, однако его забота о других должна быть включена в числовую шкалу выигрышей. Во-вторых, мы будем исходить из предположения, что если игрок сталкивается со случайным множеством исходов игры, то число, связанное с этим множеством, представляет собой среднее от выигрышей по каждому отдельному исходу, взвешенных по их вероятности. Таким образом, если в рейтинге одного игрока исход А имеет выигрыш 0, а исход Б — выигрыш 100, то множество исходов А с вероятностью 75 процентов и Б с вероятностью 25 процентов должно обеспечивать выигрыш 0,75 × 0 + 0,25 × 100 = 25. Этот показатель часто называют ожидаемым выигрышемот случайного множества исходов игры. Слово «ожидаемый» имеет особый подтекст на языке теории вероятностей. Под ним подразумевается не то, что вы предполагаете или ожидаете получить, а математическое (вероятностное, статистическое) ожидание, которое означает среднее от всех возможных исходов, где каждому исходу присваивается вес, пропорциональный его вероятности.

Второй момент создает потенциальные трудности. Рассмотрим игру, в которой участники получают или теряют деньги, а выигрыш измеряется в денежной сумме. Если игрок может ничего не получить с вероятностью 75 процентов и получить 100 долларов с вероятностью 25 процентов, то ожидаемый выигрыш составит 25 долларов, если его рассчитывать так, как в предыдущем примере. Допустим, что столько же игрок бы выиграл и в результате простого неслучайного исхода. Иными словами, основываясь на таком подходе к расчету выигрышей, человеку должно быть безразлично, получит он 25 долларов наверняка или пойдет на риск в случае множества возможных исходов, по которому средний выигрыш составляет 25 долларов. На первый взгляд может показаться, что большинство людей предпочтут верные 25 долларов рискованной игре, обеспечивающей средний выигрыш в том же размере.

Очень простая модификация процесса вычисления выигрышей позволяет обойти эту трудность. Мы будем их измерять не в денежном выражении, а с использованием нелинейного взвешивания денежных сумм. Речь идет о методе ожидаемой полезности, на котором мы подробнее остановимся в приложении к главе 7. А пока поверьте нам на слово: включение в концептуальную модель теории игр такого показателя, как отношение игроков к риску, — вполне выполнимая задача. В теории игр почти все основано на методе ожидаемой полезности, и он действительно полезен, хотя и не лишен недостатков. Мы будем его придерживаться в данной книге, но при этом укажем на ряд проблем, которые он оставляет нерешенными. Простой пример применения этого метода представлен в разделе 5.В главы 7.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Стратегические игры»

Представляем Вашему вниманию похожие книги на «Стратегические игры» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Владимир Гусев
Отзывы о книге «Стратегические игры»

Обсуждение, отзывы о книге «Стратегические игры» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x