15. Переход к шагу 18
16. О1=О2
17. Переход к шагу 6
18. Число_Смен_Радиуса= Число_Смен_Радиуса+1
19. Радиус=1/Число_Смен_Радиуса
20. Если радиус >= Минимапьный_радиус то переход к шагу 6
21. Установить_параметры В1
22. Освободить_вектор В1
23. Освободить_вектор В2
Рис. 2. Алгоритм метода случайной стрельбы с уменьшением радиуса
Отмечен ряд случаев, когда метод случайной стрельбы с уменьшением радиуса работает быстрее градиентных методов, но обычно это не так.
Метод покоординатного спуска
Идея этого метода состоит в том, что если в задаче сложно или долго вычислять градиент, то можно построить вектор, обладающий приблизительно теми же свойствами, что и градиент следующим путем. Даем малое положительное приращение первой координате вектора. Если оценка при этом увеличилась, то пробуем отрицательное приращение. Далее так же поступаем со всеми остальными координатами. В результате получаем вектор, в направлении которого оценка убывает. Для вычисления такого вектора потребуется, как минимум, столько вычислений функции оценки, сколько координат у вектора. В худшем случае потребуется в два раза большее число вычислений функции оценки. Время же необходимое для вычисления градиента в случае использования двойственных сетей можно оценить как 2–3 вычисления функции оценки. Таким образом, учитывая способность двойственных сетей быстро вычислять градиент, можно сделать вывод о нецелесообразности применения метода покоординатного спуска в обучении нейронных сетей.
Подбор оптимального шага
Данный раздел посвящен описанию макрокоманды Оптимизация_Шага. Эта макрокоманда часто используется в описании процедур обучения и не столь очевидна как другие макрокоманды. Поэтому ее текст приведен на рис. 3. Идея подбора оптимального шага состоит в том, что при наличии направления в котором производится спуск (изменение параметров) задача многомерной оптимизации в пространстве параметров сводится к одномерной оптимизации — подбору шага. Пусть заданы начальный шаг (Ш2) и направление спуска (антиградиент или случайное) (Н). Тогда вычислим величину О1 — оценку в текущей точке пространства параметров. Изменив параметры на вектор направления, умноженный на величину пробного шага, вычислим величину оценки в новой точке — О2. Если О2 оказалось меньше либо равно О1, то увеличиваем шаг и снова вычисляем оценку. Продолжаем эту процедуру до тех пор, пока не получится оценка, большая предыдущей. Зная три последних значения величины шага и оценки, используем квадратичную оптимизацию — по трем точкам построим параболу и следующий шаг сделаем в вершину параболы. После нескольких шагов квадратичной оптимизации получаем приближенное значение оптимального шага.
1. Создать_вектор В
2. Сохранить_вектор В
3. Вычислить_оценку О1
4. Ш1=0
5. Модификация_вектора Н, 1, Ш2
6. Вычислить_оценку О2
7. Если О1<���О2 то переход к шагу 15
8. Ш3=Ш2*3
9. Установить_параметры В
10. Модификация_вектора Н, 1, Ш3
11. Вычислить_оценку О3
12. Если О3>О2 то переход к шагу 21
13. О1=О2 О2=О3 Ш1=Ш2 Ш2=ШЗ
14. Переход к шагу 3
15. ШЗ=Ш2 03=02
16. Ш2=ШЗ/3
17. Установить_параметры В
18. Модификация_вектора Н, 1, Ш2
19. Вычислить_оценку О3
20. Если О2>=О1 то переход к шагу 15
21. Число_парабол=0
22. Ш=((ШЗШЗ-Ш2Ш2)О1+(Ш1Ш1-ШЗШЗ)О2+(Ш2Ш2-Ш1Ш )О3)/(2((ШЗ-Ш2)О1+(Ш1-Ш3)О2 +(Ш2-Ш )О3))
23. Установить_параметры В
24. Модификация_вектора Н, 1, Ш
25. Вычислить_оценку О
26. Если Ш>Ш2 то переход к шагу 32
27. Если О>О2 то переход к шагу 30
28. ШЗ=Ш2 О3=О2 О2=О Ш2=Ш
29. Переход к шагу 36
30. Ш1=Ш О1=О
31. Переход к шагу 36
32. Если О>О2 то переход к шагу 35
33. ШЗ=Ш2 О3=О2 О2=О Ш2=Ш
34. Переход к шагу 36
35. Ш1=Ш О1=О
36. Чиспо_парабол=Число_парабол+1
37. Если Число_парабоп<���Максимальное_Число_Парабол то переход к шагу 22
33. Установить_параметры В
39. Модификация_вектора Н, 1, Ш 2
40. Освободить_вектор В
Рис. 3. Алгоритм оптимизации шага
Если после первого пробного шага получилось О2 большее О1, то уменьшаем шаг до тех пор, пока не получим оценку, меньше чем О1. После этого производим квадратичную оптимизацию.
Читать дальше