а)
б)
в)
Рис. 6. Траектории спуска при различных конфигурациях окрестности минимума и разных методах оптимизации.
Остановимся на основных недостатках этого метода. Во-первых, эти методом находится тот минимум, в область притяжения которого попадет начальная точка. Этот минимум может не быть глобальным. Существует несколько способов выхода из этого положения. Наиболее простой и действенный — случайное изменение параметров с дальнейшим повторным обучение методом наискорейшего спуска. Как правило, этот метод позволяет за несколько циклов обучения с последующим случайным изменением параметров найти глобальный минимум.
Вторым серьезным недостатком метода наискорейшего спуска является его чувствительность к форме окрестности минимума. На рис. 6а проиллюстрирована траектория спуска при использовании метода наискорейшего спуска, в случае, если в окрестности минимума линии уровня функции оценки являются кругами (рассматривается двумерный случай). В этом случае минимум достигается за один шаг. На рис. 6б приведена траектория метода наискорейшего спуска в случае эллиптических линий уровня. Видно, что в этой ситуации за один шаг минимум достигается только из точек, расположенных на осях эллипсов. Из любой другой точки спуск будет происходить по ломаной, каждое звено которой ортогонально к соседним звеньям, а длина звеньев убывает. Легко показать что для точного достижения минимума потребуется бесконечное число шагов метода градиентного спуска. Этот эффект получил название овражного, а методы оптимизации, позволяющие бороться с этим эффектом — антиовражных.
kParTan
1. Создать_вектор В1
2. Создать_вектор В2
3. Шаг=1
4. Вычислить_оценку О2
5. Сохранить_вектор В1
6. О1=О2
7. N=0
8. Вычислить_градиент
9. Оптимизация_шага Пустой_указатель Шаг
10. N=N+1
11. Если N
12. Сохранить_вектор В2
13. В2=В2-В1
14. ШагParTan=1
15. Оптимизация шага В2 ШагParTan
16. Вычислить_оценку О2
17. Если О1-О2<���Точность то переход к шагу 5
Рис. 7. Метод kParTan
Одним из простейших антиовражных методов является метод kParTan. Идея метода состоит в том, чтобы запомнить начальную точку, затем выполнить k шагов оптимизации по методу наискорейшего спуска, затем сделать шаг оптимизации по направлению из начальной точки в конечную. Описание метода приведено на рис 7. На рис 6в приведен один шаг оптимизации по методу 2ParTan. Видно, что после шага вдоль направления из первой точки в третью траектория спуска привела в минимум. К сожалению, это верно только для двумерного случая. В многомерном случае направление kParTan не ведет прямо в точку минимума, но спуск в этом направлении, как правило, приводит в окрестность минимума меньшего радиуса, чем при еще одном шаге метода наискорейшего спуска (см. рис. 6б). Кроме того, следует отметить, что для выполнения третьего шага не потребовалось вычислять градиент, что экономит время при численной оптимизации.
Квазиньютоновские методы
Существует большое семейство квазиньютоновских методов, позволяющих на каждом шаге проводить минимизацию в направлении минимума квадратичной формы. Идея этих методов состоит в том, что функция оценки приближается квадратичной формой. Зная квадратичную форму, можно вычислить ее минимум и проводить оптимизацию шага в направлении этого минимума. Одним из наиболее часто используемых методов из семейства одношаговых квазиньютоновских методов является BFGS метод. Этот метод хорошо зарекомендовал себя при обучении нейронных сетей (см. [29]). Подробно ознакомиться с методом BFGS и другими квазиньютоновскими методами можно в работе [48].
Лекции 13, 14. Контрастер
Компонент контрастер предназначен для контрастирования нейронных сетей. Первые работы, посвященные контрастированию (скелетонизации) нейронных сетей появились в начале девяностых годов [64, 323, 340]. Однако, задача контрастирования нейронных сетей не являлась центральной, поскольку упрощение сетей может принести реальную пользу только при реализации обученной нейронной сети в виде электронного (оптоэлектронного) устройства. Только в работе А.Н. Горбаня и Е.М. Миркеса «Логически прозрачные нейронные сети» [83] (более полный вариант работы см. [77]), опубликованной в 1995 году задаче контрастирования нейронных сетей был придан самостоятельный смысл — впервые появилась реальная возможность получать новые явные знания из данных. В связи с тем, что контрастирование нейронных сетей не является достаточно развитой ветвью нейроинформатики, стандарт, приведенный в данной главе, является очень общим.
Читать дальше