Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Основная проблема состоит в том, что при оптимизации первой функции, значения других функций не контролируются. И наоборот, при оптимизации всех других функций не контролируется значение первой функции. Если обучение устроено по циклу — сначала оптимизация первой функции, потом второй и т. д., то после завершения цикла значение любой из функций может оказаться не меньше, а больше чем до начала обучения. Такой подход к обучению нейронных сетей привел к появлению различных методов «коррекции» данной трудности. Так, например, появилось правило, что нельзя «сильно» оптимизировать оценку отдельного примера, для того, чтобы при оптимизации сеть «не сильно» забывала остальные примеры. Возникли различные правила «правильного» перебора примеров и т. д. Наиболее ярким примером такого правила является случайный перебор примеров, рекомендованный для обучения сетей, обучаемых без учителя (сетей Кохонена [131, 132]). Однако все эти правила не гарантировали быстрого достижения результата. Более того, часто результат вообще не достигался за обозримое время.

Альтернативой всем правилам «малой оптимизации» и «правильного перебора примеров» является выработка единой функции оценки всего обучающего множества. Правила построения оценки обучающего множества из оценок отдельных примеров приведены в главе «Оценка и интерпретатор ответа».

В случае использования оценки обучающего множества, математическая интерпретация задачи приобретает классический вид задачи минимизации функции в пространстве многих переменных. Для этой классической задачи существует множество известных методов решения [48, 104, 143]. Особенностью обучения нейронных сетей является их способность быстро вычислять градиент функции оценки. Под быстро, понимается тот факт, что на вычисления градиента тратится всего в два-три раза больше времени, чем на вычисление самой функции. Именно этот факт делает градиентные методы наиболее полезными при обучении нейронных сетей. Большая размерность пространства обучаемых параметров нейронной сети (10 2–10 6) делает практически неприменимыми все методы, явно использующие матрицу вторых производных.

Описание алгоритмов обучения

Все алгоритмы обучения сетей методом обратного распространения ошибки опираются на способность сети вычислять градиент функции ошибки по обучающим параметрам. Даже правило Хебба использует вектор псевдоградиента, вычисляемый сетью при использовании зеркального порогового элемента (см. раздел «Пороговый элемент»главы «Описание нейронных сетей»). Таким образом, акт обучения состоит из вычисления градиента и собственно обучения сети (модификации параметров сети). Однако, существует множество не градиентных методов обучения, таких, как метод покоординатного спуска, метод случайного поиска и целое семейство методов Монте-Карло. Все эти методы могут использоваться при обучении нейронных сетей, хотя, как правило, они менее эффективны, чем градиентные методы. Некоторые варианты методов обучения описаны далее в этой главе.

Поскольку обучение двойственных сетей с точки зрения используемого математического аппарата эквивалентно задаче многомерной оптимизации, то в данной главе рассмотрены только несколько методов обучения, наиболее используемых при обучении сетей. Более полное представление о методах оптимизации, допускающих использование в обучении нейронных сетей, можно получить из книг по методам оптимизации (см. например [48, 104, 143]).

Краткий обзор макрокоманд учителя

При описании методов используется набор макросов, приведенный в табл. 2. В табл. 2 дано пояснение выполняемых макросами действий. Все макрокоманды могут оперировать с данными как пространства параметров, так и пространства входных сигналов сети. В первой части главы полагается, что объект обучения установлен заранее. В макросах используются понятия и аргументы, приведенные в табл. 1. Список макрокоманд приведен в табл. 2.

Таблица 1. Понятия и аргументы макрокоманд, используемых при описании учителя

Название Смысл
Точка Точка в пространстве параметров или входных сигналов. Аналогична вектору.
Вектор Вектор в пространстве параметров или входных сигналов. Аналогичен точке.
Вектор_минимумов Вектор минимальных значений параметров или входных сигналов.
Вектор_максимумов Вектор максимальных значений параметров или входных сигналов.
Указатель_на_вектор Адрес вектора. Используется для передачи векторов в макрокоманды.
Пустой_указатель Указатель на отсутствующий вектор.

При описании методов обучения все аргументы имеют тип, определяемый типом аргумента макрокоманды. Если в описании макрокоманды в табл. 2 тип аргумента не соответствует ни одному из типов, приведенных в табл. 1, то эти аргументы имеют числовой тип.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x