312. Hopfield J.J. Neural Networks and physical systems with emergent collective computational abilities//Proc. Nat. Sci. USA. 1982. V.79. P. 2554-2558.
313. Hornik K., Stinchcombe M., White H. Multilayer Feedforward Networks are Universal Approximators. - Neural Networks. 1989. Vol. 2,. PP. 359–366.
314. Jeffries C. Code recognition with neural network dynamical systems // SIAM Rev.- 1990.- 32, № 4.- PP. 636-651.
315. Kalman R.E. A theory for the identification of linear relations // Frontiers Pure and Appl. Math.: Collect. Pap. Dedicat. Jacques-Louis Lions Occas. His 60th Birthday: Sci. Meet., Paris, 6-10 June, 1988.- Amsterdam etc., 1991.- PP.
316. 117-132. Keller J.M., Yager R.R., Tahani H. Neural network implementation of fuzzy logic // Fuzzy Sets and Syst.1992.- 45, № 1. PP. 1-12.
317. Kirdin A.N., Rossiev D.A., Dorrer M.G. Neural Networks Simulator for Medical, Physiological and Psychological Applications. Труды третьей международной конференции "Математика, компьютер, образование". - Москва, 1996. с.360-367.
318. Kirdin A.N., Rossiev D.A.. Neural-networks simulator for medical and physiological applications.3-d International conference "Mathematics, computer, education", Dubna, Jan. 1996. Abstracts, p. 162.
319. Kochenov D.A., Rossiev D.A. Approximations of functions of C[A,B] class by neural-net predictors (architectures and results)// AMSE Transaction, Scientific Siberian, A, 1993, Vol. 6. Neurocomputing. PP. 189-203.
320. Koopmans T. Serial correlation and quadratic forms in normal variates // Ann. Math. Statist, 1942. V. 13. PP. 14-33.
321. Korver M., Lucas P.J. Converting a rule-based expert system into a belief network // Med. Inf. Lond.- 1993.- V.18, N.3.- P.219-241.
322. Kosko B. Bidirectional Associative Memories. - IEEE Transactions on Systems, Man, and Cybernetics, Jan. 1988. Vol. SMC-18. PP.49-60.
323. Le Cun Y., Denker J.S., Solla S.A. Optimal Brain Damage // Advances in Neural Information Processing Systems II (Denver 1989). San Mateo, Morgan Kaufman, pp. 598-605 (1990)
324. Lee H.-L., Suzuki S., Adachi Y. et al. Fuzzy Theory in Traditional Chinese Pulse Diagnosis // Proceedings of 1993 International Joint Conference on Neural Networks, Nagoya, Japan, October 25-29, 1993.- Nagoya, 1993.- V.1.- P.774-777.
325. Levine D.S., Parks R.W., Prueitt P.S. Methodological and theoretical issues in neural network models of frontal cognitive functions // Int. J. Neurosci.- 1993.- V.72, N.3-4.- P.209-233.
326. Lichtman A.J., Keilis-Borok V.I., Pattern Recognition as Applied to Presidential Elections in U.S.A., 1860-1980; Role of Integral Social, Economic and Political Traits, Contribution No. 3760. 1981, Division of Geological and Planetary Sciences, California Institute of Technology.
327. Maclin P.S., Dempsey J. Using an artificial neural network to diagnose hepatic masses // J. Med. Syst.- 1992.- V.16, N.5.- P.215-225.
328. Macukow B. Robot control with neural networks // Artif. Intell. and Inf.-Contr. Syst. Rob.-89: Proc. 5th Int. Conf., Strbske Pleso, 6-10 Nov., 1989.- Amsterdam etc., 1989.- PP. 373-376.
329. Mirkes E.M., Svitin A.P. The usage of adaptive neural networks for catalytic activity predictions // CHISA - 10th Int. Congr. of chem. eng., chem. equipment design and automation. Praha, 1990. Prepr. B3.80 [1418]. 7 pp.
330. Modai I., Stoler M., Inbar-Saban N. et al. Clinical decisions for psychiatric inpatients and their evaluation by a trained neural network // Methods Inf. Med.- 1993.- V.32, N.5.- P.396-399.
331. Modha D.S., Heht-Nielsen R. Multilayer Functionals. Mathematical Approaches to Neural Networks. J.G.Taylor (Ed.). Elsevier, 1993. PP. 235–260.
332. Nakajima H., Anbe J., Egoh Y. et al. Evaluation of neural network rate regulation system in dual activity sensor rate adaptive pacer // European Journal of Cardiac Pacing and Electrophysiology.- Abstracts of 9th International Congress, Nice Acropolis - French, Rivera, June 15-18, (228), 1994.- Rivera, 1994.- P.54.
333. Narendra K.S., Amnasway A.M. A stable Adaptive Systems. Prentice-Hall, 1988. 350 p.
334. Neural Computers/Ed. by R. Eckmiller, Ch. Malsburg. Springer, 1989. 556 p.
335. Okamoto Y., Nakano H., Yoshikawa M. et al. Study on decision support system for the interpretation of laboratory data by an artificial neural network // Rinsho. Byori.- 1994.- V.42, N.2.- P.195-199.
336. Pedrycz W. Neurocomputations in relational systems // IEEE Trans. Pattern Anal. and Mach. Intell.- 1991.- 13, № 3.- PP. 289-297.
337. Pham D.T., Liu X. Statespace identification of dynamic systems using neural networks // Eng. Appl. Artif. Intell.1990.- 3, № 3.- PP. 198-203.
338. Pineda F.J. Recurrent bakpropagation and the dynamical approach to adaptive neural computation. - Neural Comput., 1989. Vol. 1. PP.161–172.
339. Poli R., Cagnoni S., Livi R. et al. A Neural Network Expert System for Diagnosing and Treating Hypertension // Computer.- 1991.- N.3.- P.64-71.
340. Prechelt L. Comparing Adaptive and Non-Adaptive Connection Pruning With Pure Early Stopping // Progress in Neural Information Processing (Hong Kong, September 24-27, 1996), Springer, Vol. 1 pp. 46-52.
341. Real Brains, Artificial Minds/Ed. by J.L. Casti, A. Karlqvist. Norton-Holland, 1987. 226 p.
342. Reinbnerger G., Weiss G., Werner-Felmayer G. et al. Neural networks as a tool for utilizing laboratory information: comparison with linear discriminant analysis and with classification and regression trees // Proc. Natl. Acad. Sci., USA.- 1991.- V.88, N.24.- P.11426-11430.
343. Rinast E., Linder R., Weiss H.D. Neural network approach for computer-assisted interpretation of ultrasound images of the gallbladder // Eur. J. Radiol.- 1993.- V.17, N.3.- P.175-178.
344. Rossiev D.A., Golovenkin S.E., Shulman V.A., Matyushin G.V. Forecasting of myocardial infarction complications with the help of neural networks // Proceedings of the WCNN'95 (World Congress on Neural Networks'95, Washington DC, July 1995). PP. 185-188.
345. Rossiev D.A., Golovenkin S.E., Shulman V.A., Matyushin G.V. Neural networks for forecasting of myocardial infarction complications // Proceedings of the Second IEEE RNNS International Symposium on Neuroinformatics and Neurocomputers, September 20-23, 1995, Rostov-on-Don. - PP 292-298.
346. Rossiev D.A., Golovenkin S.E., Shulman V.A., Matyushin G.V. The employment of neural networks to model implantation of pacemaker in patients with arrhythmias and heart blocks // Modelling, Measurument & Control, C, 1995. Vol. 48, № 2. PP. 39-46.
347. Rossiev D.A., Golovenkin S.E., Shulman V.A., Matyushin G.V. The employment of neural networks to model implantation of pacemaker in patients with arrhythmias and heart blocks // Proceedings of International Conference on Neural Information Processing, Oct. 17-20, 1994, Seoul, Korea.V.1.- PP.537-542.
348. Rossiev D.A., Savchenko A.A., Borisov A.G., Kochenov D.A. The employment of neural-network classifier for diagnostics of different phases of immunodeficiency // Modelling, Measurement & Control.- 1994.- V.42.- N.2. P.55-63.
349. Rozenbojm J., Palladino E., Azevedo A.C. An expert clinical diagnosis system for the support of the primary consultation // Salud. Publica Mex.- 1993.- V.35, N.3.- P.321-325.
350. Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation. - Parallel Distributed Processing: Exploration in the Microstructure of Cognition, D.E.Rumelhart and J.L.McClelland (Eds.), vol. 1, Cambridge, MA: MIT Press, 1986. PP. 318–362.
351. Rummelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors // Nature, 1986. V. 323. P. 533-536.
352. Saaf L. A., Morris G. M. Filter synthesis using neural networks: [Pap.] Opt. Pattern Recogn. II: Proc. Meet., Paris, 26-27 Apr., 1989 // Proc. Soc. Photo-Opt. Instrum. Eng.- 1989.- 1134.- PP. 12-16.
Читать дальше