Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Оптимизация шага (Optimize)

Заголовок функции:

Function Optimize (Direct: PRealArray; Step: Real): Real;

Описание аргументов

Direct — указатель на массив направления модификации сети.

Step — начальный шаг в направлении Direct.

Действия, выполняемые функцией Optimize, описаны в разделе « Подбор оптимального шага». В случае возникновения ошибки при выполнении функции она генерирует внутреннюю ошибку 605 — ошибка при исполнении внешнего запроса, передает управление обработчику ошибок, функция возвращает значение 0. В противном случае возвращается значение оценки при оптимальном шаге. Следует отметить, что после завершения выполнения функции, параметры сети соответствуют результату выполнения функции Modify(Direct, 1, Step), где Step — значение оптимального шага.

Сохранить массив (SaveArray)

Заголовок функции:

Function SaveArray(Vec: PRealArray): Logic;

Описание аргументов

Vec — указатель на массив.

Функция генерирует запрос nwGetData. После выполнения функции в массиве, на который указывает аргумент Vec, содержится текущий массив параметров. В случае возникновения ошибки в ходе выполнения функции генерируется внутренняя ошибка 605 — ошибка при исполнении внешнего запроса, управление передается обработчику ошибок, функция возвращает значение ложь. В противном случае возвращается значение истина.

Установить параметры (SetArray)

Заголовок функции:

Function SetArray(Vec: PRealArray): Logic;

Описание аргументов

Vec — указатель на массив, содержащий параметры, которые необходимо установить.

Функция генерирует запрос nwSetData.После выполнения функции параметры сети совпадают с параметрами, содержащимися в массиве, на который указывает аргумент Vec. В случае возникновения ошибки в ходе выполнения функции генерируется внутренняя ошибка 605 — ошибка при исполнении внешнего запроса, управление передается обработчику ошибок, функция возвращает значение ложь. В противном случае возвращается значение истина.

Вычислить оценку (Estimate)

Заголовок функции:

Function Estimate(Handle: Integer; All: Logic): Real;

Описание аргументов

Handle — номер сеанса задачника.

All — признак обучения по всему обучающему множеству.

Функция генерирует запрос к исполнителю на вычисление оценки. Если аргумент All содержит значение истина, то обучение производится по всему обучающему множеству, в противном случае — позадачно. В случае возникновения ошибки при выполнении функции он генерирует внутреннюю ошибку 605 — ошибка при исполнении внешнего запроса, передает управление обработчику ошибок, функция возвращает значение 0. В противном случае возвращается значение вычисленной оценки.

Вычислить градиент (CalcGradient)

Заголовок функции:

Function CalcGradient(Handle: Integer; All: Logic): Real;

Описание аргументов

Handle — номер сеанса задачника.

All — признак обучения по всему обучающему множеству.

Функция генерирует запрос к исполнителю на вычисление градиента. Если аргумент All содержит значение истина, то обучение производится по всему обучающему множеству, в противном случае — позадачно. В случае возникновения ошибки при выполнении функции он генерирует внутреннюю ошибку 605 — ошибка при исполнении внешнего запроса, передает управление обработчику ошибок, функция возвращает значение 0. В противном случае возвращается значение вычисленной оценки.

Запустить запрос (GenerateQuest)

Заголовок функции:

Function GenerateQuest(Name: PString; Arguments: PRealArray): Logic

Описание аргументов

Name — указатель на символьную строку, содержащую имя запроса.

Arguments — массив, содержащий адреса аргументов запроса.

Функция генерирует запрос к макрокомпоненту нейрокомпьютер на исполнение запроса, имя которого указано в аргументе Name, с аргументами, адреса которых указаны в аргументе Arguments. Действуют следующие ограничения. В строке, содержащей имя запроса должно содержаться только одно слово — имя запроса. Ведущие и хвостовые пробелы подавляются. В массиве Arguments должно содержаться ровно столько элементов, сколько аргументов у генерируемого запроса. В массив Arguments всегда складываются адреса аргументов, даже если в запрос данный аргумент передается по значению.

Язык описания учителя

В отличие от таких компонентов как оценка, сеть и интерпретатор ответа, учитель не является составным объектом. Однако учитель может состоять из множества функций, вызывающих друг друга. Собственно учитель — это процедура, управляющая обучением сети. Ключевые слова, специфические для языка описания учителя приведены в табл. 37.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x