Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

<���Псевдоним интерпретатора>::= <���Идентификатор>

<���Описание весов>::= Weights<���Список весов>;

<���Список весов>::= <���Вес> [,<���Список весов>]

<���Вес>::= <���Действительное число>

<���Описание сигналов>::= Signals <Константное выражение типа Long >

<���Описание распределения сигналов>::= <���Описание распределения Сигналов,Оценки, Частной оценки , Signals >

<���Описание распределения ответов>::= <���Описание распределения Ответов,Оценки, Частной оценки , Answer >

<���Конец описания оценки>::= End Estimation

Описание языка описания оценок

Структура описания оценки имеет вид: заголовок, описание функций, описание частных оценок, описание состава, описание связей с интерпретаторами, описание сигналов, описание распределения сигналов, описание распределения ответов, конец описания оценки.

Заголовок состоит из ключевого слова Estimation и имени оценки и служит для обозначения начала описания оценки в файле, содержащем несколько компонент нейрокомпьютера.

Описание частной оценки — это описание процедуры, вычисляющей оценку и, при необходимости, массив производных оценки по выходным сигналам сети. Отметим, что при описании частной оценки его аргументом, как правило, является число оцениваемых сигналов. При выполнении частная оценка получает в качестве аргументов массив оцениваемых сигналов, признак необходимости вычисления производных, правильный ответ, достоверность правильного ответа, действительную переменную для возвращения вычисленной оценки и массив для возвращения производных. Формально, при исполнении частная оценка имеет описание следующего вида:

Pascal:

Procedure Estimation(Signals, Back: PRealArray; Direv: Logic; Answer,reliability: real; var estim: real);

C:

void Estimation(PRealArray Signals, PRealArray Back, Logic Direv, Real Answer,real reliability, real* estim);

Отметим одну важную особенность выполнения тела частной оценки. Оператор присваивания значения элементу массива производных, означает добавление этого значения к величине, ранее находившейся в этом массиве. Например, запись Back[I] = A, означает выполнение следующего оператора Back[I] = Back[I] + A. Это связано с тем, что один и тот же сигнал может быть задействован в нескольких частных оценках и производная общей функции оценки равна сумме производных частных оценок по этому сигналу.

В разделе описания состава перечисляются частные оценки, входящие в состав оценки. Признаком конца раздела служит символ «;».

В необязательном разделе установления параметров производится задание значений параметров частных оценок. После ключевого слова SetParameters следует список значений параметров в том порядке, в каком параметры (статические переменные) были объявлены при описании частной оценки (для стандартных оценок порядок параметров указан в табл. 33). При использовании одного оператора задания параметров для задания параметров нескольким экземплярам одной частной оценки после ключевого словаsetparameters указывается столько выражений, задающих значения параметров, сколько необходимо для одного экземпляра. Например, если в блоке описания состава содержится 10 экземпляров двоичной оценки на 15 оцениваемых сигналов — MyEst: BinaryCoded(15)[10], то после ключевого слова setparameters должно быть только одно выражение:

MyEst[I:1..10] SetParameters0.01*I

В данном примере первая оценка будет иметь уровень надежности равный 0.01, вторая — 0.02 и т. д.

В необязательном разделе описания связей с интерпретаторами можно указать интерпретатор ответа, связанный с данной оценкой. Для связи интерпретатор и оценка должны иметь одинаковое число параметров и одинаковый порядок их описания. Так, в приведенном ниже примере, невозможно связывание оценки Temp с одноименным интерпретатором из-за различия в числе параметров. Если в левой части выражения Link указан диапазон оценок, то в правой части должен быть указан диапазон, содержащий столько же интерпретаторов. Указание связи влечет идентичность параметров оценки и связанного с ней интерпретатора ответов. Идентичность обеспечивается при исполнении запросов aiSetData и esSetData.

В необязательном разделе описания весов указываются веса частных оценок. Если этот раздел опущен, то все частные оценки равны единице, то есть все частные оценки имеют равную значимость.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x