Очень похож на парадокс со вторым тузом парадокс со вторым ребенком. Мистер Смит сообщает, что у него двое детей и по крайней мере один из них мальчик. Какова вероятность того, что второй ребенок мистера Смита тоже мальчик? Первое, что приходит в голову, — это сказать, что вероятность равна 1/2, но, перебрав три равновероятных возможности — ММ, МД, ДМ, — мы видим, что ММ — только одна из них, следовательно, искомая вероятность равна 1/3 [Если дети не близнецы!]. Ситуация резко изменилась бы, если бы Смит сказал, что мальчиком является старший (или тот, кто повыше ростом, или тот, чей вес больше) из его детей. В этом случае допустимые комбинации исчерпываются двумя — ММ и МД— и вероятность того, что другой ребенок мистера Смита мальчик, возрастает до 1/2. Не будь этого обстоятельства, мы могли бы очень просто угадывать, какой стороной упала и скрытая от нас монета, причем с вероятностью, превосходящей вероятность отгадывания вслепую. Для этого нам нужно было бы бросить свою монету и, если бы она упала вниз решкой, рассуждать так: бросали две монеты, одна из них (наша) выпала вверх орлом, поэтому вероятность того, что другая монета также выпала вверх орлом, равна всего лишь 1/3, и мы смело можем утверждать, что другая монета выпала вверх решкой. Ошибка этого рассуждения заключается, конечно, в том, что нам точно известно, какая именно монета упала орлом вверх. Ситуация здесь аналогична ситуации в предыдущей задаче, когда мистер Смит сообщает, кто из детей мальчик, поэтому и вероятность правильного ответа в обеих задачах меняется одинаково.
Самым знаменитым среди парадоксов теории вероятностей следует считать петербургский парадокс, впервые изложенный в «Мемуаре», который знаменитый математик Даниил Бернулли представил Санкт-Петербургской Академии. Предположим, что я бросаю монету и согласен уплатить вам доллар, если выпадет орел.
В случае же выпадения решки я бросаю монету второй раз и плачу вам два доллара, если при втором подбрасывании выпадет орел.
Если же снова выпадет решка, я бросаю монету в третий раз и плачу вам четыре доллара, если при третьем подбрасывании выпадает орел. Короче говоря, с каждым разом я удваиваю выплачиваемую сумму. Бросать монету я продолжаю до тех пор, пока вы не остановите игру и не предложите мне расплатиться. Какую сумму вы должны заплатить мне, чтобы я согласился играть с вами в эту «одностороннюю игру», а вы не остались в убытке?
В ответ трудно поверить: сколько бы вы мне ни платили за каждую партию, пусть даже по миллиону долларов, вы все равно сможете с лихвой окупить свои расходы. В каждой отдельно взятой партии вероятность того, что вы выиграете один доллар, равна 1/2, вероятность выиграть два доллара равна 1/4, четыре доллара— 1/8 и т. д. В итоге вы можете рассчитывать на выигрыш в сумме — (1 х 1/2) + (2 х 1/4) + (4 х 1/8)… Этот бесконечный ряд расходится: его сумма равна бесконечности. Следовательно, независимо от того, какую сумму вы будете выплачивать мне перед каждой партией, проведя достаточно длинный матч, вы непременно окажетесь в выигрыше. Делая такое заключение, мы предполагаем, что мой капитал неограничен и мы можем проводить любое число партий.
Разумеется, если вы заплатили за право сыграть одну партию, например 1000 долларов, то с весьма высокой вероятностью вы эту партию проиграете, но ожидание проигрыша с лихвой компенсируется шансом, хотя и небольшим, выиграть астрономическую сумму при выпадении длинной серии из одних лишь орлов. Если же мой капитал, как это имеет место в действительности, ограничен, то и разумная плата за право сыграть партию также должна иметь верхний предел. Петербургский парадокс возникает в любой азартной игре с удваивающимися ставками. Подробный анализ этого парадокса приводит ко всякого рода тонким вопросам обоснования теории вероятностей.
Карл Хемпель, глава школы «логических позитивистов», профессор философии Принстонского университета, открыл еще один удивительный парадокс. Со времени первой публикации (в 1937 году) и поныне «парадокс Хемпеля» неизменно служит предметом высокоученых споров между специалистами по философии науки, ибо он затрагивает самую сущность научного метода.
Предположим, пишет Хемпель, что ученый хочет исследовать гипотезу «все вороны черные». Его исследование состоит в изучении как можно большего числа ворон. Чем больше он найдет черных ворон, тем более вероятной становится его гипотеза. Таким образом, каждая черная ворона может рассматриваться как пример, подтверждающий гипотезу. Большинство ученых считает, что они отчетливо представляют себе, что такое подтверждающий пример. Парадокс Хемпеля мгновенно рассеивает их иллюзии, так как с помощью железной логики мы можем легко доказать, что красная корова тоже является подтверждающим примером гипотезы «все вороны черные»! Вот как это делается.
Читать дальше