Чтобы вы могли получить представление о том, какие трудности здесь возникают, предположим, что новичок делает ход на клетку 8. Робот вполне мог бы ответить не слишком хорошим ходом, заняв клетку 3. При игре против знатока крестиков и ноликов такая ошибка могла бы оказаться роковой, но при игре с противником «средней квалификации» вряд ли следует ожидать, что он сразу же ответит ходом, обеспечивающим ему победу, и займет клетку 9. Четыре из шести оставшихся ходов ведут к проигрышу противника. В самом деле, у противника наверняка появится сильное искушение пойти на клетку 4 и подстроить этим ходом роботу сразу две ловушки.
К сожалению, планам противника не суждено сбыться: робот легко может избежать ловушек, ответив сначала ходом на клетку 9, а затем на клетку 5. Может оказаться, что на практике при такой довольно безрассудной игре машина будет одерживать победу чаще, чем при спокойной тактике, почти заведомо приводящей к ничьей.
Истинный мастер игры в крестики и нолики, будь то человек или робот, должен не только знать наиболее вероятные ответные ходы неопытного игрока (их нетрудно установить, собрав статистические данные об уже сыгранных партиях), но и уметь анализировать стиль игры своего партнера, чтобы определить, какие ошибки тот склонен совершать особенно часто. Следует учесть и то обстоятельство, что новичок от партии к партии совершенствует свое мастерство, но здесь «простая» игра в крестики и нолики заставляет нас погрузиться в дебри весьма нетривиальных проблем теории вероятностей и психологии.
Английское название игры в крестики и нолики — тик-так-тоу — пишется и произносится по-разному. Согласно «Оксфордскому слословарю стихов Матушки-гусыни» [11] Oxford Dictionary of Mother Goose Rhymes. — 1951, p. 406. Сборники «Стихи Матушки-гусыни» соответствуют издаваемым у нас сборникам прибауток. Некоторые из «Стихов Матушки-гусыни» были переведены на русский язык С. Я. Маршаком и вышли в сборнике «Английские народные песенки».
название тик-так-тоу происходит от старинной английской детской считалочки:
Tit, tat, toe,
My first go,
Three jolly butcher boys all in a row.
Stick one up, stick one down,
Stick one in the old man's crown. [12] Тик-так-тоу! Мой ход — первый. Трое сынишек мясника выстроились в ряд. Запишем одного вверху, Запишем одного внизу, А одного — в корону старика.
Я знаю многих любителей крестиков и ноликов, которые ошибочно полагают, что самое главное — это научиться неизменно выигрывать, и считают, что они уже постигли все тайны этой игры.
Истинный же мастер игры в крестики и нолики должен уметь использовать малейшее преимущество, возникающее даже в тяжелых для него ситуациях. Следующие три примера помогут читателю уяснить сказанное. Первый ход во всех трех партиях делается на одну из клеток 2, 6, 8, и 4.
Если вы начинаете с хода X8, а противник отвечает вам ходом О2, то вторым ходом вам лучше всего пойти на четвертую клетку (Х4). Этот ход приводит к выигрышу в четырех из шести возможных ответных ходов противника. Помешать вам выиграть противник может лишь ходом О7 или О9. Если противник сначала пошел Х8, а вы ответным ходом заняли одну из нижних угловых клеток, например О9, то вы еще можете надеяться на победу: противнику достаточно совершить любой из ходов Х2, Х4 или Х7.
Если противник делает первый ход Х8, то ответный ход О5 может привести к интересному развитию партии: если противник вторым ходом занимает клетку 2 (Х2), то вы можете даже позволить ему выбрать за вас ту клетку, которую вы займете при следующем ходе. При любом вашем ходе выигрыш вам обеспечен!
Рассказывая о разновидности игры в крестики и нолики, любимой древними римлянами, в которой фишки разрешалось передвигать с клетки на клетку, мы упоминали о том, что игрок, заняв центр доски, всегда выиграет. Для тех читателей, кого это интересует, приводим примерный ход двух партий в древнеримские крестики и нолики.
Обе партии гарантируют первому игроку выигрыш независимо от того, разрешается ли передвигать фишки по двум главным диагоналям или нет. Если фишки можно передвигать и по малым, побочным, диагоналям, следует придерживаться только второй партии.
Глава 5. ПАРАДОКСЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ
Теория вероятностей представляет собой область математики, необычайно богатую парадоксами — истинами, настолько противоречащими здравому смыслу, что поверить в них трудно даже после того, как правильность их подтверждена доказательством. Прекрасный пример этому — парадокс с днями рождения. Выберем наугад 24 человека. Какова, по вашему мнению, вероятность того, что двое или большее число из них родились в один и тот же день одного и того же месяца (но, быть может, в разные годы)? Интуитивно чувствуется, что вероятность такого события должна быть очень мала. На самом же деле она оказывается равной 27/50, то есть чуть выше 50 %!
Читать дальше