Мартин Гарднер - Математические головоломки и развлечения

Здесь есть возможность читать онлайн «Мартин Гарднер - Математические головоломки и развлечения» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1999, ISBN: 1999, Издательство: Мир, Жанр: Математика, Развлечения, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические головоломки и развлечения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические головоломки и развлечения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.

Математические головоломки и развлечения — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические головоломки и развлечения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эта игра упоминается у Овидия в книге III «Искусства любви» в числе тех игр, которыми поэт советует овладеть женщине, если она хочет привлечь к себе внимание мужчин в обществе. Игра в крестики и нолики была известна в Англии еще в 1300 году под названием «Танец трех мужчин», от которого пошли «танцы» девяти, одиннадцати и двенадцати мужчин; в Америке последний вариант по сей день называется «мельница». Поскольку первый игрок, начиная с центра, наверняка выигрывает, то такое начало не сулит ничего интересного и обычно им не пользуются. Это ограничение при рациональной тактике приводит к ничьей, но обе стороны могут поставить противнику уйму потенциальных ловушек.

В одном из вариантов игры разрешается передвигаться на соседние клетки вдоль двух главных диагоналей. Дальнейшее видоизменение игры (приписываемое американским индейцам) допускает перемещение любой фишки на одну клетку в любом направлении (например, с клетки 2 можно передвинуться на клетку 4). В первом варианте тот, кто делает первый ход, может добиться победы, если начнет с центра, но второй вариант, по-видимому, всегда можно свести вничью. В игре без всяких ограничений, называемой во Франции «les pendus » («повешенные»), фишку разрешается передвигать на любую свободную клетку. Эта игра при разумной тактике также заканчивается вничью.

Известно много разновидностей крестиков и ноликов, в которых игра ведется на доске размером 4 клетки на 4. У каждого игрока имеется по четыре фишки, и их нужно попытаться выстроить в один ряд. В шестидесятые годы появилась игра «тико» — разновидность крестиков и ноликов, для которой нужна доска размером пять клеток на пять. Каждый из игроков по очереди выставляет свои четыре фишки, а затем передвигает их на одну клетку в любом направлении. Выигрывает тот, кто сумеет либо поставить свои четыре фишки в ряд (по горизонтали, вертикали или диагонали), либо выстроит их в виде квадрата на четырех клетках с общей вершиной.

Играть в крестики и нолики можно и без фишек, от этого игра не становится менее увлекательной. Рассмотрим, например, игру в крестики и нолики «наоборот» — тоу-так-тик (это название предложил М. Шоделл). Играют в нее, как в обычные крестики и нолики, но тот, кто первым закончит ряд из трех знаков, не выигрывает, а проигрывает. В игре тоу-так-тик у второго игрока имеется бесспорное преимущество. Первый может закончить вничью, лишь заняв первым же ходом центр, а в дальнейшем повторив по симметрии все ходы противника.

В последние годы появилось несколько трехмерных игр типа крестиков и ноликов. В них играют на кубических досках, а выигрывает тот, кому удается занять подряд все клетки по горизонтали, вертикали или диагонали в любом сечении куба, параллельном его грани, или на четырех главных диагоналях куба. Если куб имеет размер 3 х 3 х 3, то первый игрок побеждает без труда. Интересно заметить, что эта игра никогда не может закончиться вничью, ибо у первого игрока имеется четырнадцать разных ходов. Сделать же все четырнадцать ходов, не заполнив при этом одного из рядов по вертикали, горизонтали или диагонали, просто невозможно. Гораздо интереснее играть на кубической доске размером 4x4x4. Здесь лишь при разумной тактике ничьей может не быть.

Предлагались и другие варианты игры на кубических досках.

Так, А. Барнерт придумал игру, в которой победителем считается тот, кто заполнит своими фишками клетки в любом сечении куба, параллельном одной из граней, или в шести главных диагональных плоскостях. П. Парке и Р. Саттен еще в 1941 году изобрели интересную игру на кубической доске размером 3x3x3 клетки, в которой выигрывает тот, кто сумеет занять два пересекающихся ряда. Клетку, стоящую на пересечении двух рядов, правила игры разрешают занимать в последнюю очередь. Поскольку занявший центральную клетку куба заведомо обеспечивает себе победу, этот ход разрешается лишь в двух случаях: а) если им достигается победа, то есть если все остальные клетки двух рядов, пересекающихся в центре куба, уже заняты фишками данного игрока; б) если, заняв эту клетку, играющий мешает своему противнику следующим ходом выиграть партию.

В четырехмерные крестики и нолики играют на воображаемой гиперкубической доске, поделив ее на двумерные квадраты. Например, гиперкуб 4x4x4x4 выглядит так, как показано на рис. 19.

Рис 19 Четырехмерные крестики и нолики Пунктиром показаны некоторые ходы - фото 19

Рис. 19 Четырехмерные крестики и нолики. Пунктиром показаны некоторые ходы, приводящие к выигрышу.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические головоломки и развлечения»

Представляем Вашему вниманию похожие книги на «Математические головоломки и развлечения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические головоломки и развлечения»

Обсуждение, отзывы о книге «Математические головоломки и развлечения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x