Существует много вариантов этого фокуса. Например, первое число может написать зритель. Тогда ваше число, которое вы записываете под числом зрителя, нужно выбрать так, чтобы цифры, стоящие друг над другом, давали в сумме девятку. Далее зритель пишет третье число, вы пишете по тому же принципу четвертое число. Зритель пишет пятое и последнее число, после чего вы подводите черту и мгновенно подписываете сумму. Или, если вам это покажется более эффективным, пока зритель суммирует числа, поворачиваетесь спиной, а затем, не глядя на записанное, объявляете результат. Ответ получается, конечно, следующим образом: из последнего написанного числа нужно вычесть двойку и поставить ее перед полученным числом.
По желанию вы можете затянуть процесс суммирования. Например, можно вместе со зрителем записать шесть пар слагаемых, каждая из которых дает в сумме девятки. Последнее число, которое запишет зритель, доведет количество слагаемых до 13; чтобы получить теперь ответ, нужно из тринадцатого числа вычесть 6, а затем написать 6 перед числом, полученным в остатке. Если вообразить себе, что сложение распространится, скажем, на 28 пар чисел, прежде чем будет написано последнее число, принцип фокуса остается неизменным: вычтите 28 из последнего числа и поставьте 28 перед полученным остатком.
Существует еще один вариант фокуса, когда предсказание записывает зритель. Допустим, он выбрал число 538. Отбросьте пятерку и сложите ее с остатком, получится 43. Это число вы записываете первым.
Теперь поочередно со зрителем, пользуясь принципом девятки, вы записываете числа в столбик, пока под первым числом не окажется пять пар:
В ответе, конечно, получается число, предсказанное зрителем.
«Психологические моменты»
Еще одна категория фокусов с числами, совсем отличная от фокусов с предсказанием или отгадыванием числа, основана на том, что называют психологическими моментами. Эти фокусы не всегда получаются, но по каким-то неведомым причинам психологического характера шансы на успех при их демонстрации оказываются значительно большими, чем этого можно было ожидать. Вот простой пример. Если вы попросите назвать какое-нибудь число от 1 до 10, большинство людей назовет семерку, а если заданные границы будут 1 и 5, то — тройку.
Еще один любопытный психологический фактор, неизвестно кем впервые подмеченный, можно использовать в фокусе следующим образам. Напишите на клочке бумаги число 37 и отложите его в сторону. Затем, обращаясь к кому-нибудь из присутствующих, скажите: «Назовите, пожалуйста, двузначное число между 1 и 50, чтобы обе его цифры были нечетными и различными. Например, число 11 называть нельзя».
Может показаться странным, но много шансов, что зритель назовет 37 (второе наиболее вероятное число 35). В сущности, его выбор ограничен восемью числами, причем упоминание числа 11 как бы привлекает его мышление к числам третьего десятка.
Если этот фокус у вас получится, попробуйте за ним другой. На этот раз попросите назвать двузначное число между 50 и 100, обе цифры которого должны быть четными и, как и в предыдущем случае, различными. В данном случае выбор зрителя ограничен семью числами, из которых как будто чаще всех называют 68. Если под руками имеются игральные карты, можно предсказать это число, положив на стол шестерку и восьмерку лицевой стороной вниз. Это повышает ваши шансы на успех, так как вы имеете выбор между двумя возможными ответами, т. е. между 68 и 86, в зависимости от того, какую карту вы откроете первой.
Автор имеет в виду стандартную колоду из 52 карт, по 13 карт каждой масти, и использует следующую нумерацию карт в пределах данной масти:
1 — туз, 2 — двойка, 3 — тройка, 4 — четверка, 5 — пятерка, 6 — шестерка, 7 — семерка, 8 — восьмерка, 9 — девятка, 10 — десятка, 11 —валет, 12 — дама, 13 — король.
Предположим, что у зрителя имеется k карт, у показывающего N > k карт; пусть, далее, выбрано число m < N .
Очевидное равенство
N = k + m + (N — k — m)
является математическим эквивалентом утверждения, показывающего: «у меня имеется на m карт больше, чем у зрителя, и еще столько, чтобы от числа карт зрителя ( k ) досчитать до числа N — m».
Число m следует выбирать маленьким; если m + k будет больше, чем N , то разность N — k — m окажется отрицательной.
Читать дальше