Морис Клайн - Математика. Утрата определенности.

Здесь есть возможность читать онлайн «Морис Клайн - Математика. Утрата определенности.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1984, Издательство: Мир, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика. Утрата определенности.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика. Утрата определенности.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика. Утрата определенности.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Совершенно иную концепцию изучения реального мира и отношения математики к реальности развил Аристотель, хотя он и был учеником Платона и много у Платона почерпнул. Аристотель критиковал Платона за идею о двух различных мирах и за сведение естественных наук к математике. Аристотель был физиком в буквальном смысле этого слова. В материальных телах он видел первичную субстанцию и источник реальности. По Аристотелю, физика и наука в целом должны заниматься изучением физического мира и извлекать истину из этих исследований. Подлинное знание достигается на основе чувственного опыта с помощью интуиции и абстрагирования. Абстракции не существуют независимо от человеческого разума.

Аристотель неоднократно подчеркивал, что универсалии — общие понятия — абстрагированы от реальных вещей. Для получения этих абстракций «мы начинаем с вещей познаваемых и наблюдаемых и переходим к вещам менее наглядным, которые по своей природе более понятны и более познаваемы». Аристотель брал наглядные, чувственные качества вещей, выхолащивал их и возводил до независимых, абстрактных понятий.

Какое место занимала математика в развитой Аристотелем схеме вещей? Основополагающими в схеме Аристотеля были физические науки. Математике отводилась вспомогательная роль в изучении природы при описании таких внешних свойств, как форма и размеры. Кроме того, математика помогала объяснять причины тех явлений, которые можно наблюдать в материальном мире. Так, геометрия может помочь в объяснении наблюдений из области оптики и астрономии, а арифметические пропорции могут служить основой гармонии. Но математические понятия и принципы заведомо являются абстракциями, корни которых уходят в реальный мир. Поскольку же они абстрагированы из реального мира, то они применимы к нему. Человеческий разум обладает особой способностью приходить к таким идеализированным свойствам физических объектов, отправляясь от ощущений, и создаваемые им абстракции с необходимостью должны быть истинными.

Даже нашего беглого обзора взглядов тех философов, которые сформировали духовный мир греков, достаточно, чтобы понять главное: все они подчеркивали необходимость изучения природы для понимания и оценки лежащей в основе всего сущего реальности. Кроме того, со времен пифагорейцев почти все философы утверждали, что природа устроена на математических основах. К концу классического периода окончательно сформировалось учение о природе, основанной на математических принципах, и начался планомерный поиск математических законов. Хотя это учение отнюдь не предопределило все последующее развитие математики, получив достаточно широкое распространение, оно оказало влияние на величайших математиков, в том числе и на тех, кто непосредственно не разделял его. Из всех достижений умозрительных построений древних греков подлинно новаторской была концепция космоса, в котором все подчинено математическим законам, постигаемым человеческим разумом.

Греки преисполнились решимости доискаться до истин и, в частности до истин о математических основах природы. Как следует приступить к поиску истин и как при этом гарантировать, что поиск действительно приводит к истинам? Греки предложили «план» такого поиска. Хотя он создавался постепенно на протяжении нескольких веков (VI-III вв. до н.э.) и историки науки расходятся во мнениях относительно того, когда и кем этот план был впервые задуман, к III в. до н.э. «план поиска истин» был доведен до совершенства.

Математика в широком смысле слова, понимаемая как всевозможное использование чисел и геометрических фигур, родилась за несколько тысячелетий до того, как ей занялись греки классического периода. Она включает в себя достижения многих исчезнувших цивилизаций, среди которых наиболее выдающуюся роль сыграли культуры древнего Египта и Вавилона. Но во всех древних цивилизациях, за исключением греческой, математика еще не сформировалась в отдельную науку, у нее не было своей особой методологии, и она не ставила перед собой иных целей, кроме решения самых непосредственных, практических задач. Математика была своего рода инструментом, набором разрозненных нехитрых правил, позволявших людям удовлетворять повседневные запросы: составлять календари, назначать сроки проведения сельскохозяйственных работ, вести торговлю. Открытые методом проб и ошибок, на основе опыта и наблюдений, многие из этих правил были верны лишь приближенно. О математике догреческих цивилизаций в лучшем случае можно сказать, что она в известной мере продемонстрировала мощь, если не строгость, мышления и проявила больше упорства, чем блеска. Математику такого рода принято называть эмпирической. Эмпирическая математика египтян и вавилонян стала прелюдией к тому, что создали греки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика. Утрата определенности.»

Представляем Вашему вниманию похожие книги на «Математика. Утрата определенности.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математика. Утрата определенности.»

Обсуждение, отзывы о книге «Математика. Утрата определенности.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x