Однако в целом математики признали обоснованность предложенного Гильбертом доказательства. Гильберт вслед за тем продолжил важную работу по алгебраической теории чисел и основаниям геометрии. Он дал новые блестящие доказательства — оба помещающиеся на трех с половиной страницах — трансцендентности чисел π и e . (Когда в 1882 году фон Линдеманн впервые доказал трансцендентность числа π , вышеупомянутый Кронеккер [96]похвалил его за элегантность доказательства, но добавил, что оно ничего не доказывает, ибо трансцендентные числа не существуют!) В 1895 году Гильберт получил место профессора в Геттингене, где и оставался до своего ухода на пенсию в 1930 году.
Слова «Гильберт» и «Геттинген» связаны друг с другом в головах современных математиков столь же тесно, как в других сферах связаны «Джойс» и «Дублин», «Джонсон» и «Лондон». [97]Гильберт и Геттинген играли ведущую роль в математике в течение первой трети XX века — не просто в немецкой математике, а в математике как таковой. Швейцарский физик Пауль Шеррер, студентом приехав в Геттинген в 1913 году, сообщал об обнаружении там «интеллектуальной жизни непревзойденной интенсивности». Необычайно большая доля видных математиков и физиков первой половины столетия училась или в Геттингене, или под руководством кого-то, кто сам там учился.
Относительно личности Гильберта до нас доходят несколько разнородные впечатления. Будучи вполне светским человеком, он был увлеченным танцором и пользовался популярностью как преподаватель. Не чуждался он и погони за юбками — в той весьма ограниченной степени, какая вообще была возможна в провинциальной Германии времен Вильгельма. (Впрочем, нельзя сказать, чтобы эта погоня заводила его достаточно далеко.) В нем была бунтарская жилка: похоже, он тяготился жесткой расписанностью университетской жизни, обычаями, правилами и общественными установлениями. Одна профессорская жена пришла в ужас, узнав, что Гильберта видели в дальней комнате одного из городских ресторанов, играющим в бильярд с младшими преподавателями. Когда во время Первой мировой войны университет отказался предоставить Эмми Нетер постоянную преподавательскую позицию на том основании, что она женщина [98], Гильберт просто-напросто объявил, что прочитает курс лекций, а затем предоставил Нетер их чтение. Он, по-видимому, был мягким экзаменатором, всегда готовым истолковать сомнение в пользу экзаменуемого.
И все же трудно избавиться от впечатления, что Гильберт был человеком, которому нелегко давалась терпимость к глупцам — категории, к которой он относил весьма значительную часть человечества. Для Гильберта это было тем более печально, что его единственный ребенок, Франц, страдал от серьезного умственного расстройства. Не в состоянии ни изучить как следует какой бы то ни было предмет, ни постоянно работать на одной и той же работе, Франц страдал еще и периодическими приступами паранойи, после которых в течение некоторого времени его приходилось содержать в лечебнице для душевнобольных. Зафиксировано высказывание Гильберта во время первого из этих заточений: «С этого момента мне придется считать, что у меня нет сына».
Как бы то ни было, Гильберт пользовался уважением своих студентов и коллег-математиков. Про него имеется обширное собрание анекдотов, по большей части незлых. Вот только три. Первый касается Гипотезы Римана и взят из англоязычной биографии, написанной Констанс Рид [99]:
У Гильберта был студент, который однажды показал ему работу, претендующую на доказательство Гипотезы Римана. Гильберт тщательно изучил работу; на него произвела большое впечатление глубина аргументации. Но, увы, он обнаружил там ошибку, которую даже он сам не смог устранить. На следующий год студент умер. Гильберт попросил у охваченных горем родителей разрешения выступить с речью на похоронах. Родственники и друзья студента рыдают под дождем возле могилы; Гильберт выходит вперед. Он начинает со слов о том, какая это большая трагедия, что такой одаренный молодой человек умер прежде, чем ему представилась возможность продемонстрировать, чего он в состоянии достичь. Но, продолжает Гильберт, несмотря на то что предложенное этим молодым человеком доказательство Гипотезы Римана содержало ошибку, возможно тем не менее, что однажды доказательство этой знаменитой проблемы будет получено именно на том пути, который наметил покойный. «И в самом деле, — с энтузиазмом продолжал Гильберт, стоя под дождем возле могилы студента, — рассмотрим функцию одной комплексной переменной…»
Читать дальше