Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как и в случае с другими матрешками N, Z, Qи R, числа, принадлежащие к одной из внутренних матрешек, являются привилегированными комплексными числами. Натуральное число 257, например, есть комплексное число 257 + 0 i ; вещественное число √7 есть комплексное число √7 + 0i. Вещественное число — это просто комплексное число с нулевой мнимой частью.

А как насчет комплексных чисел с нулевой вещественной частью? Они называются (чисто) мнимыми числами. Примеры чисто мнимых чисел: 2 i , −1479 i, πi , 0,0000000577 i . Чисто мнимое число можно, конечно, записать как полновесное комплексное число, если вы специально хотите такое сделать: 2 i можно записать как 0 + 2 i . При возведении чисто мнимого числа в квадрат получается отрицательное вещественное число. Заметим, что это верно и для отрицательных мнимых чисел: квадрат числа 2 i равен −4, но и квадрат −2 i тоже равен −4 по правилу знаков.

Сложение двух комплексных чисел — дело несложное. Надо просто складывать по отдельности вещественные части и отдельно мнимые части: сложение комплексных чисел −2 + 7 i и 5 + 12 i даст 3 + 19 i . То же и с вычитанием: если в последнем примере вычитать, а не складывать, получим −7 − 5 i . Что касается умножения, надо только помнить правило раскрытия скобок, не забывая при этом, что i 2 = −1: так, (−2 + 7 i )×(5 + 12 i ) дает −10 − 24 i + 35 i + 84 i 2, что сводится к −94 + 11 i . В общем случае (a + bi)×(c + di) = (ac − bd) + (bc + ad)i.

Деление основано на нехитром приеме. Что такое 2: i ?. Ответ: запишем это в виде дроби, как 2/ i . Чудесное свойство дробей состоит в том, что одновременное умножение и числителя, и знаменателя на одно и то же число (не равное нулю) не изменяет дроби: 3/ 4, 6/ 8, 15/ 20и 12 000/ 16 000— это все разные способы записи одной и той же дроби. Итак, умножим числитель и знаменатель дроби 2/ i на − i . Умножение двойки на − i даст, конечно, −2 i , а i умножить на − i есть − i 2, то есть −(−1), что равно 1. Следовательно, 2/ i равно −2 i /1, что есть просто −2 i .

Такое всегда можно сделать — превратить знаменатель дроби в вещественное число. А поскольку всем известно, как делить на вещественные числа, мы у цели. Как нам поделить два полновесных комплексных числа, скажем, (−7 − 4 i )/(−2 + 5 i )? Вот как: умножим числитель и знаменатель на −2 − 5 i . Давайте сначала выполним умножение сверху: (−7 − 4 i )×(−2 − 5 i ) = −6 + 43 i . Теперь снизу: (−2 + 5 i )×(−2 − 5 i ) = 29. Ответ: − 6/ 29+ 43/ 29 i . Знаменатель дроби (a + bi)/(c + di) всегда можно превратить в вещественное число, умножив ее на (c − di) . Общее правило на самом деле имеет вид

А каков квадратный корень из i Не потребуется ли нам ввести целый новый класс - фото 80

А каков квадратный корень из i ? Не потребуется ли нам ввести целый новый класс чисел, чтобы включить √ i ? И все далее и далее до бесконечности? Ответ: перемножим скобки (1 + i )×(1 + i ). Результат, как можно видеть, равен 2 i . Значит, квадратный корень из 2 i равен 1 + i . С поправкой на масштаб, квадратный корень из i должен быть равен 1/√2 + i /√2. Это число на самом деле им и является.

Комплексные числа по-настоящему прекрасны. С ними можно делать все, что угодно. Можно даже возводить их в комплексные степени, если вы полностью отдаете себе отчет в том, что делаете. Например, (−7 − 4 i ) −2+5 i равно приблизительно −7611,976356 + 206,350419 i . Однако подробное обсуждение этой темы мы отложим до другого момента.

V.

Чего нельзя сделать с комплексными числами, так это уложить их на прямую, как вещественные.

Семейство вещественных чисел R(конечно, с содержащимися в нем Q, Zи N) очень легко себе представить. Просто выстроим все числа вдоль прямой линии. Этот способ представления вещественных чисел называется «вещественная прямая» (рис. 11.1).

Рисунок 111Вещественная прямая Каждое вещественное число лежит гдето на - фото 81

Рисунок 11.1.Вещественная прямая.

Каждое вещественное число лежит где-то на этой прямой. Например, √2 расположен немного к востоку от 1, чуть ближе, чем на полпути до 2, −π лежит лишь немного к западу от −3, а 1 000 000 — за пределами рисунка, где-то в соседнем районе. Ясно, что на конечном листе бумаги удается показать только часть прямой. От читателя требуется известная доля воображения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x