Картина такова, как будто ln x старается быть функцией x 0. Конечно, это не x 0: для любого положительного числа выражение x 0определяется равным числу 1, согласно 4-му правилу, и соответствующий график, как мы видели, — это «остановка сердца». Но хотя функция ln x и не есть x 0, она умудряется при достаточно больших x поднырнуть под функцию x ε со сколь угодно малым ε и оставаться там уже навсегда. [39]
В действительности дело обстоит даже еще более странным образом. Рассмотрим утверждение: «функция ln x рано или поздно будет расти медленнее, чем x 0,001, и x 0,000001, и x 0,000000001, и …» Представим себе, что мы возвели все это утверждение в некоторую степень — скажем, в сотую. (Это, надо признать, не очень строгая математическая операция, но она приводит к верному результату.) После применения 3-го правила утверждение будет выглядеть так: «функция (ln x ) 100рано или поздно будет расти медленнее, чем x 0,1, и x 0,0001, и x 0,0000001, и …». Другими словами, если логарифм растет медленнее, чем любая степень буквы x , то это же верно и для любой степени функции ln x . Каждая из функций (ln x ) 2, (ln x ) 3, (ln x ) 4, …, (ln x ) 100, … растет медленнее, чем любая степень x . Независимо оттого, сколь велико N и сколь мало ε , график функции (ln x ) N в конце концов поднырнет под график функции x ε и останется там, внизу.
Такое нелегко себе представить. Функции (ln x ) N растут быстро — и даже очень быстро. И тем не менее, если на рисунке 5.3отойти достаточно далеко на восток, то рано или поздно, при некотором впечатляюще большом аргументе, каждая из них опустится ниже кривой x 0,3, x 0,2, x 0,1и вообще любой кривой из этого семейства, какую вы только потрудитесь нарисовать. Придется отправиться на восток в окрестность точки x = 7,9414 × 10 3959, прежде чем (ln x ) 100опустится ниже, чем x 0,3; и однако же это случится.
V.
Кое-что из сказанного понадобится нам прямо сейчас, а кое-что останется на потом. Но все сказанное важно для понимания Гипотезы Римана, и я призываю вас проконтролировать некоторые основные моменты — проверить, как вы их понимаете, прежде чем двигаться дальше. Для этого сгодится карманный калькулятор. Можете, например, найти ln 2 (он равен 0,693147…) и ln 3 (равный 1,098612…) и удостовериться, что при сложении их действительно получается ln 6 (равный 1,791759…). Но только обратите, пожалуйста, внимание, что (как я уже упоминал) прежде использовались логарифмы по основанию 10, так что клавиша «log» на многих карманных калькуляторах вычисляет именно десятичные логарифмы. Тот единственный логарифм, который нас здесь интересует, — логарифм по основанию e — на калькуляторе, как правило, вычисляется с помощью альтернативной клавиши, помеченной ln x . Вот эта клавиша вам и нужна. (Буква n указывает на «натуральный» логарифм; логарифм по основанию e по всем правилам называется «натуральный логарифм».)
Ну а теперь вернемся к базельской задаче.
VI.
Эйлерово решение базельской задачи прекрасно иллюстрирует сделанное в разделе I этой главы замечание, что поиск решений в замкнутом виде расширяет понимание, позволяя проникнуть в суть вещей. Эйлерово решение дало не только замкнутое выражение для ряда из обратных квадратов, но в качестве побочного продукта еще и замкнутые выражения для рядов
,
и т.д. Для четных N результат Эйлера дает в замкнутом виде точное значение для следующего бесконечного ряда (5.1):
Когда N равно двум, ряд сходится к π 2/6, как уже было сказано; когда N равно 4, ряд сходится к π 4/90; когда N равно 6, ряд сходится к π 6/945 и т.д. Метод Эйлера дает ответ для каждого четного N. В более поздней публикации он сам добрался до N = 26, когда ряд сходится к числу 1 315 862 π 26/11 094 481 976 030 578 125.
А что, если N нечетное? Полученный Эйлером результат ничего про это не говорит. Как не говорит и ни один другой результат, полученный за последующие 260 лет. Нет никаких идей относительно замкнутого выражения (если таковое вообще существует) ни для
, ни для аналогичного ряда при других нечетных показателях степени. Никто не смог найти замкнутое выражение для этих рядов. Мы знаем, что они сходятся, и можем, конечно, методом грубой силы вычислить их значение с любой требуемой точностью. Мы просто не знаем, что они означают. Только в 1978 году было доказано, что ряд
определяет иррациональное число. [40]
Читать дальше