A7
Книга Титчмарша вышла в переработанном (Роджером Хит-Брауном) издании в 1986 году.
A8
Сэр Майкл Атья повторил тут вещь довольно известную: идеи о том, что алгебра = время, а геометрия = пространство, восходят по крайней мере к Гамильтону (т.е. к 1840-м годам).
A9
«„Ансамбль“ (в данном употреблении, кстати, это слово было введено Альбертом Эйнштейном)…» Это, по-видимому, неверно. Один физик обратил мое внимание, что одна из глав в книге Уилларда Гиббса «Основные принципы статистической механики» называется «О движении систем или ансамблей систем на длительных промежутках времени». Эта книга опубликована в 1902 году, т.е. за три года до того, как Эйнштейн с блеском ворвался в физику, написав три статьи в A nnalen der Physik. По-видимому, Гиббс был первым, кто употреблял этот термин таким образом. Однако я был бы весьма благодарен, если бы кто-нибудь смог дать более точную привязку.
Никола Орем (Nicole d'Oresme) был не только математиком, но и естествоиспытателем, философом, физиком, астрономом и экономистом, а также воспитателем Дофина, будущего короля Карла V. (Примеч. перев.)
Стандартным русским словосочетанием является также математический анализ (или матанализ , как говорят, например, все те студенты, которые не называют его просто матаном ). В переводе в подавляющем большинстве случаев оставлен просто «анализ», чего достаточно для передачи сути дела. Соответственно, прилагательное «аналитический» означает «[изучаемый или выраженный] средствами анализа». (Примеч. перев.)
Точнее, сумма некоторого числа членов гармонического ряда. (Примеч. перев.)
То есть для того, чтобы приблизиться к пределу — в данном случае к числу π — с хорошей точностью, надо брать члены последовательности с достаточно большими номерами. (Примеч. перев.)
Силы французской армии «Север» под командованием Франсуа Дюмурье и французской армии «Центр» под командованием Франсуа-Кристофа Келлермана остановили продвижение армии под командованием герцога Брауншвейгского Карла Вильгельма Фердинанда. Артиллерийское сражение оказалось тактически безрезультатным, но стратегически важным как доказательство жизнеспособности Французской революции. Книга «Пятнадцать решающих битв в мировой истории» вышла в 1851 г. (Примеч. перев.)
Этот исторический факт я усвоил, когда ходил в Англии в школу, с помощью следующей песенки викторианских времен:
Георг был Первый трусом; даже
Второй был ненамного гаже.
И не сыскал никто на свете
Достойных черт в Георге Третьем.
Когда ж Георг Четвертый помер —
То, к счастью, был последний номер.
(
Пер. М. Визеля .)
На самом деле Георги на этом не закончились — в XX веке их было еще двое. (Здесь и далее не отмеченные особо примечания принадлежат автору.)
И математик, один из создателей дифференциального и интегрального исчисления (в частности, автор современного обозначения для интеграла). (Примеч. перев.)
Другой мощный подъем Эльбы произошел в 1962 г. и вызвал значительные жертвы и разрушения в районе Вендланд. После этого возвели систему крупных дамб. В августе 2002 г., как раз во время завершения моей работы над книгой, Эльба снова вышла из берегов. Однако сооруженные в 1962 г. дамбы выдержали напор, и регион пострадал меньше других, расположенных выше по течению.
Эрвин Нейеншвандер — профессор истории математики в Цюрихском университете. Он является главным авторитетом по жизни и творчеству Бернхарда Римана; он издал письма Римана. Я использовал в этой книге результаты его исследований. Я также многое взял из двух единственных изданных на английском книг, в которых удалось найти сколько-нибудь обстоятельный рассказ о Римане: «Риман, топология и физика» Михаила Монастырского (перевод 1998 г., выполненный Роджером Куком, Джеймсом Кингом и Викторией Кинг) и «Бернхард Риман, 1826-1866» Детлефа Лаугвитца (перевод 1999 г., выполненный Абе Шенитцером). Хотя это математические биографии — т.е. в них больше математики, чем биографических фактов, — обе книги позволяют составить хорошее представление о самом Римане и о его времени и содержат много ценных наблюдений. (См.: Монастырский М.И. Бернхард Риман. Топология. Физика. М.: Янус-К, 1999. — Примеч. перев. )
Читать дальше