Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Например, нижеследующее написано заслуженным профессором в отставке из Сиракузского университета Эриком Хеммингсеном (приводится с его разрешения). Профессор Хеммингсен сначала обращает внимание на то, что, хотя Сельберг действительно работал в Институте высших исследований в то время, когда его статья вышла из печати, всю работу он в действительности проделал, пока был в Сиракузском университете. Профессор Хеммингсен далее пишет:

Сельберг находился с визитом в Институте в течение академического 1947/48 года, когда он пересекся с одним из моих коллег, который в тот год также находился там с визитом. Сиракузский университет был первым, кто предложил Сельбергу исследовательскую работу в Америке, и вместе с женой они приехали в Сиракузы как раз перед началом осеннего семестра 1948 года. Они вернулись в Принстон летом 1950 года.

Когда я приехал в Сиракузы в сентябре 1947 года, Эрдеш уже находился там. Он был моим старым знакомым по Пенсильванскому университету, где он уже работал, когда я там появился в 1941 году в качестве аспиранта. Мы оба провели в Пенсильванском университете несколько лет, и он был очень любезен по отношению ко мне.

Сельберг, естественно, был очень рад, что ему удалось найти свое доказательство Теоремы о распределении простых чисел, и примерно равный ему по возрасту коллега, выказывавший серьезный интерес к теории чисел, представлялся подходящей фигурой для того, чтобы говорить с ним о своей работе. К сожалению, это было огромной ошибкой, настолько печальной [sic], что теперь некоторые люди считают, что доказательство принадлежит Эрдешу. После смерти Эрдеша появилась статья в Notices of the Amer. Math. Soc., автор которой дошел до того, что утверждал, будто Теорема о распределении простых чисел — это лучшая из работ, сделанных Эрдешем. Меня это исключительно покоробило, и я решил записать свои собственные впечатления о том, что имело место. Этот рассказ в настоящее время хранится в математической библиотеке Сиракузского университета.

A3

«…до самого недавнего времени не исключалось …» Специалист по аналитической теории чисел Сид Грэм из Мичиганского университета замечает, что имелись гораздо более ранние результаты, ставящие под сомнение теорему 15.1. Это, в первую очередь, результат Ингэма 1942 года (О двух предположениях в теории чисел. Amer. J. Math . Vol. 64. P. 313-319). Упомянутый в тексте результат Одлыжко и Риле основан на работе Ингэма. Сид пишет: «Хотя гипотеза Мертенса была опровергнута только в 1985 году, к ней относились скептически уже задолго до этого».

A4

«…у муравья Арга есть брат-близнец …» Один из читателей заметил, что рабочие муравьи, строго говоря, самки , так что это должна быть «сестра».

A5

«Майкл Берри показал …» Сэр Майкл написал мне очень любезное и занятное письмо, в котором поблагодарил за книгу и добавил в мое собрание математических баек парочку новых. Кроме того, он подверг критике один момент, который, как мне кажется, самое место обсудить именно здесь. С его разрешения я в точности воспроизвожу его письмо. Вот что он пишет:

<���…> написанное вами, хотя и верно само по себе, упускает из виду весьма существенное обстоятельство, которое следует из квантовой аналогии. А именно — предсказание и детальное описание (1),(2)отклонений от ГУА-статистики в корреляциях между сильно разнесенными нулями. Эти отклонения заметил Эндрю Одлыжко (он наблюдал их в численной дисперсии положений нулей); он задался вопросом, не являются ли они результатом ошибки в его программе. Он чрезвычайно любезно предоставил мне полученные им данные, из которых получалось, что отклонения точно соответствуют «квантовой» теории, за исключением некоторых осцилляций малого масштаба, объяснение которым теперь нашли Джон Китинг и Эжен Богомольни (3). С моей точки зрения, данное ими объяснение этих отклонений является сильнейшим свидетельством в пользу гипотезы Римана; оно, кроме того, помещает неуловимый оператор в класс квантовых систем с классическим хаосом, а не в класс случайных матриц.

(1) Berry M.V. Semiclassical formula for the number variance of the Riemann Zeros, in: Nonlinearity Vol. 1. 1988. P. 399-407.

(2) Berry M.V. and Keating J.P. The Riemann Zeros and Eigenvalue Asymptotics, in: the SIAM Review. Vol. 41. №2. 1999. P. 236-266. [SIAM означает Society for Industrial and Applied Mathematics. ]

(3) Bogomolny E. and Keating J.P. Asymptotics of the pair correlation of Riemann zeros. 1999.

A6

В то время, когда я работал над книгой, я не знал о книге Джулиана Хейвила «Гамма: Изучение константы Эйлера», которая вышла примерно в то же время, что и «Простая одержимость», и целиком посвящена этой загадочной гамме. Она прекрасно написана и содержит много интересной математики, хотя и на несколько более высоком уровне, чем в моей книге. Я рекомендую ее каждому, кто хочет узнать, почему число 0,577215664901532860606512… так чертовски важно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x