Генри Дьюдени - Кентерберийские головоломки

Здесь есть возможность читать онлайн «Генри Дьюдени - Кентерберийские головоломки» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1979, Издательство: Мир. Редакция научно-популярной и научно-фантастической литературы, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Кентерберийские головоломки: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Кентерберийские головоломки»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.
Книга доставит удовольствие всем любителям занимательной математики.

Кентерберийские головоломки — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Кентерберийские головоломки», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Поняв условия задачи, посмотрите, нельзя ли их упростить, ибо на этом пути можно избавиться от множества затруднений. Всегда озадачивает классический вопрос о человеке, который, указав на портрет, сказал: «Сестер и братьев нет у меня, но отец этого человека – сын моего отца». Каково родственное отношение говорившего к человеку на портрете? Задача сразу же упрощается, если сказать, что «сын моего отца» означает «я сам» или «мой брат». Но поскольку у говорившего не было братьев, то вполне очевидно, что это значит «я сам». Таким образом, утверждение означает всего лишь: «Отец этого человека – я сам», то есть на портрете изображен сын говорившего. И все же люди порой размышляют над этим вопросом целый час!

Во многих областях царства Головоломок есть еще не раскрытые тайны. Давайте рассмотрим несколько примеров из мира чисел – небольшие штучки, понять которые способен ребенок, хотя величайшим умам не удалось их решить. Каждый, наверное, слышал выражение «трудно квадрировать круг», хотя далеко не все имеют представление о том, что это означает. Если у вас есть круг заданного диаметра и вы хотите найти сторону квадрата в точности той же площади, то вы имеете дело с задачей о квадратуре круга. Так вот, решить ее совершенно точно невозможно (хотя мы можем найти ответ, достаточно точный для практических целей), ибо не существует рационального числа, равного отношению диаметра к окружности. Но лишь недавно доказано, что эта задача не разрешима, ибо одно дело безуспешно пытаться решить задачу и совсем другое – доказать, что она не имеет решения. Только невежественные любители головоломок могут сегодня тратить время, пытаясь квадрировать круг.

Точно так же мы не можем выразить диагональ квадрата через его сторону с помощью рационального числа. Если у вас есть квадратное окно со стороной ровно в один фут, то существует расстояние от одного его угла до другого, хотя вам не удастся выразить его рациональным числом. Простодушный человек, быть может, предположит, что мы можем взять диагональ длиной в один фут, а затем уже построить наш квадрат. И все же нам это не удастся; более того, мы не сможем выразить сторону квадрата рациональным числом, каким бы способом ни стремились к этому.

Все мои читатели знают, что такое магический квадрат. Числа от 1 до 9 можно разместить в квадрате, содержащем девять клеточек так, чтобы сумма вдоль любой вертикали, горизонтали или диагонали равнялась 15. Это очень просто; и существует только одно решение данной головоломки, ибо расположения, которые получаются из данного с помощью поворотов и зеркальных отражений, мы не рассматриваем как новые. Далее, если мы хотим составить магический квадрат из 16 чисел от 1 до 16, то здесь существует 880 различных способов, опять же без учета поворотов и зеркальных отражений. Окончательно это было доказано в последние годы. Но сколько магических квадратов удается образовать из 25 чисел, от 1 до 25, никому не ведомо, и нам еще придется развить наши знания в некоторых направлениях, прежде чем мы можем надеяться решить эту головоломку. Но удивительно, что удается построить ровно 174 240 таких квадратов при единственном дополнительном ограничении: чтобы внутренний квадрат из девяти клеточек сам был магическим. Я показал, каким образом это число можно удвоить, преобразуя каждое решение с внутренним магическим квадратом в решение без такого квадрата.

Предпринимались также тщетные попытки построить магический квадрат так называемым «ходом коня» на шахматной доске, нумеруя последовательные клетки в соответствии с ходами шахматного коня: 1, 2, 3, 4 и т. д. Это удается сделать по всем направлениям, за исключением двух диагоналей, которые до сих пор сводили на нет все усилия. Но не факт, что этого вообще сделать нельзя.

Хотя содержание данного сборника в основном оригинально, все же вы можете встретить и нескольких старых друзей, однако и они, я верю, не окажутся нежеланными гостями в тех новых одеждах, которые получили. Головоломки различны по сложности и носят столь разнообразный характер, что, быть может, не будет слишком дерзкой надежда на то, что каждый истинный их любитель найдет обильный (и, может быть, поучительный) материал на свой вкус. В одних случаях я приводил достаточно длинные решения, в других же – счел нужным ограничиться голым ответом. Если бы для каждой головоломки пришлось давать полное решение и обоснование, то либо половину головоломок пришлось бы опустить, либо объем книги увеличился бы до огромных размеров. План, которого я придерживался, имеет свои преимущества, ибо оставляет для энтузиаста возможность самостоятельных исследований. Даже в тех случаях, где я привел общую формулу, он сможет проверить ее сам.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Кентерберийские головоломки»

Представляем Вашему вниманию похожие книги на «Кентерберийские головоломки» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Кентерберийские головоломки»

Обсуждение, отзывы о книге «Кентерберийские головоломки» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x