При сравнении живых организмов и, в частности, наиболее сложно организованной системы — нервной системы человека — с искусственными автоматами следует иметь в виду следующее ограничение. Естественные системы чрезвычайно сложны, и ясно, что проблему их изучения необходимо подразделить на несколько частей. Один метод такого расчленения, особенно важный в нашем случае, заключается в следующем. Организмы можно рассматривать как составленные из частей, из элементарных единиц, которые в определенных пределах автономны. Поэтому можно считать первой частью проблемы исследование структуры и функционирования таких элементарных единиц в отдельности. Вторая часть проблемы состоит в том, чтобы понять, как эти элементы организованы в единое целое и каким образом функционирование целого выражается в терминах этих элементов.
Джон фон Нейман. Статья «Общая и логическая теория автоматов» (1948) [25] Цит. по: А. Тьюринг. Может ли машина мыслить? С приложением статьи Дж. фон Неймана «Общая и логическая теория автоматов». Пер. и примечания Ю. А. Данилова. М.: ГИФМЛ, 1960.
С начала девятнадцатого века математика рассматривалась как аналитический и логический предмет; к концу столетия она произвела на свет целый зверинец математических монстров, вроде непрерывных функций, не имеющих касательных. В динамике задача трех тел — тестовый пример стабильности Солнечной системы — все еще не имела никаких устойчивых решений, и Анри Пуанкаре, анализируя частный случай этой задачи, создал очень сложную, запутанную структуру. Изменение точки зрения с аналитической на геометрическую показало математикам, что то, что казалось ужасающим беспорядком, имело много подобий с тем видимым беспорядком, коим является реальным мир. Математические монстры, оказалось, охраняли пещеру Аладдина с новыми и замечательными математическими объектами. Вход в этот мир осуществлялся с помощью компьютеров, которые стали лабораториями новой математики, базирующейся на алгоритмах. В свою очередь, сделанные при этом открытия могли поддержать аналитическое представление и приводили к пониманию, что «простые» системы, которые использовались математиками, — всего лишь верхушка колоссального айсберга.
Имя, неразрывно связанное с фрактальной геометрией, — Бенуа Мандельброт. Ныне он профессор Йельского университета и почетный профессор IBM [26] К моменту выхода этой книги в свет Бенуа Мандельброт (1924–2010) — знаменитый французский и американский математик, создатель фрактальной геометрии — был еще жив. Он скончался 14 октября 2010 года в Кембридже (штат Массачучетс, США).
. Его интерес к тому, что он позже назвал фракталами, возник в 1951 году. В 1977 году Мандельброт издал книгу «Фракталы: форма, случай и размерность», а в 1982 году вышло ее пересмотренное и расширенное издание — «Фрактальная геометрия природы». О фракталах было написано очень много, широко известны создаваемые ими узоры в стиле рококо. В динамике была хорошо известна идея «аттракторов», например, орбита планеты — это эллиптический аттрактор. В ней существуют некоторые возмущения, но они удерживаются в определенных пределах. При решении полиномиалов числовыми методами, если итерации сходятся к определенному решению, то это решение — аттрактор. Иногда корень, который, как известно, может быть выражен графически, не может быть получен методом итерации — такой корень называют «отражателем». Но в хаотической системе вроде турбулентного воздушного потока аттрактор представляет собой фрактал, и он известен как странный аттрактор.
Как только мы понимаем, как надо правильно на это смотреть, мы находим хаотическое поведение в самых простых ситуациях. Логистическое разностное уравнение z = λ z (1 — z) — простое квадратное уравнение со всего одним изменяющимся коэффициентом, обозначенным λ. Уравнение имеет два корня, как и предполагается для квадратного уравнения, но если мы используем итерационную процедуру, то обнаружим некоторые удивительные свойства. Для большинства значений λ итерация «взрывается» и отклоняется к бесконечности. Но если мы начнем с λ = 1 и начнем медленно увеличивать значение этого коэффициента, мы увидим, что итерация не отклоняется и при этом не сходится к единственному значению: вместо этого она колеблется между рядом значений. В некоторый момент система ведет себя хаотически, выполняя дикие скачки между множеством чисел. Если мы теперь добавим комплексные числа, сегмент вещественной оси разветвляется, демонстрируя фрактальную структуру. С помощью простого преобразования разностное уравнение принимает вид другого квадратного уравнения z = z 2- т. Итерационный процесс весьма прост, но очень утомителен, если его выполнять вручную. Мандельброт первым с помощью компьютера распечатал то, что теперь называют множеством Мандельброта для случая, где z — комплексное число. Множество Мандельброта — по сути, ряд чисел, и его исходная одноцветная распечатка представляла собой черно-белый текст, состоящий из значений m , для которых итерация не сходилась к бесконечности — то есть тех, для которых итерации оставались ограниченными. Лишь после того, как компьютеры обзавелись более мощными принтерами и увеличилась сложность компьютерной графики, стала видна невероятная красота этой структуры, с ее зубчатыми завитками. Эта простая система выявила многие характеристики, которые Мандельброт стремился свести воедино. С помощью компьютера стало возможно увидеть самоподобие, столь характерное для фракталов, когда путем изменения масштаба изображения выполняется погружение внутрь множества, где обнаруживаются мини-множества, подобные большему целому. Возвращаясь к разностному уравнению, для комплексных значений λ итерации создают то, что Мандельброт любил называть «драконами». Страшные монстры математического анализа переродились в прекрасных существ, которые с радостью были приняты в дружную семью математики.
Читать дальше