Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью

Здесь есть возможность читать онлайн «Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Livebook/Гаятри, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

(Не)совершенная случайность. Как случай управляет нашей жизнью: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «(Не)совершенная случайность. Как случай управляет нашей жизнью»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге «(Не)совершенная случайность. Как случай управляет нашей жизнью» Млодинов запросто знакомит всех желающих с теорией вероятностей, теорией случайных блужданий, научной и прикладной статистикой, историей развития этих всепроникающих теорий, а также с тем, какое значение случай, закономерность и неизбежная путаница между ними имеют в нашей повседневной жизни.
Эта книга — отличный способ тряхнуть стариной и освежить в памяти кое-что из курса высшей математики, истории естественнонаучного знания, астрономии и статистики для тех, кто изучал эти дивные дисциплины в вузах; понятно и доступно изложенные основы теории вероятностей и ее применимости в житейских обстоятельствах (с многочисленными примерами) для тех, кому не посчастливилось изучать их специально; наконец, профессиональный и дружелюбный подсказчик грызущим гранит соответствующих наук в данный момент.

(Не)совершенная случайность. Как случай управляет нашей жизнью — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «(Не)совершенная случайность. Как случай управляет нашей жизнью», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Через объявления Гальтон привлекал испытуемых в свою лабораторию, где проводил измерения: роста, веса, даже некоторых костей. Его целью было найти определенный метод, позволявший вычислять данные детей, основываясь на данных их родителей. На одном из графиков Гальтона были показаны данные по росту родителей и детей. Если, скажем, рост всегда был одним и тем же, получалась аккуратная прямая, поднимавшаяся под углом в 45 градусов. Если же это соотношение в целом сохранялось, однако индивидуальные данные отличались, возникал пунктир выше и ниже прямой. Таким образом, график Гальтона демонстрировал наглядно не только общее отношение между ростом родителей и детей, но и то, до какой степени это отношение сохранялось. Что является вторым важным открытием и вкладом в статистику: определение математического показателя, описывающего это отношение. Гальтон назвал этот показатель коэффициентом корреляции.

Коэффициент корреляции — это число между −1 и 1; если оно приближается к ±1, две переменные связаны между собой линейно; 0 же означает отсутствие связи. Например, данные показывают: наедаясь в «Макдоналдсе» на 1 тыс. калорий раз в неделю, человек поправляется на 4,5 кг в год, а съедая 1 тыс. калорий дважды в неделю, на 9 кг. И так далее. Коэффициент корреляции в таком случае равен 1. Если по какой-то причине каждый, наоборот, терял бы этот вес, коэффициент корреляции был бы равен −1. А если бы данные о прибавке в весе и его потере были бы разбросаны по всему графику и не зависели от потребления еды, коэффициент равнялся бы 0. В наше время понятие «коэффициент корреляции» — одно из самых широко употребимых в статистике. К примеру, оно используется для того, чтобы проследить связь между количеством выкуренных сигарет и раковых заболеваний, расстоянием звезд от Земли и скоростью, с которой они удаляются от нашей планеты, баллами, получаемыми студентами по унифицированным тестам, и доходом в семьях этих студентов.

Труд Гальтона имел значение не только благодаря своей непосредственной важности, но еще и потому, что подвиг на дальнейшие исследования в области статистики, в результате чего наука быстро развивалась и крепла. Важную роль тут сыграл Карл Пирсон, ученик Гальтона. Ранее в этой главе я упоминал множество различных типов данных, которые распределяются в соответствии с принципом нормального распределения. Однако когда мы имеем дело с ограниченным количеством данных, кривая нормального распределения совершенной формы никогда не получится. В период становления статистики ученые, чтобы определить, действительно ли данные распределяются в соответствии с принципом нормального распределения, поступали очень просто: строили график и смотрели, какой получается кривая. Однако каким образом можно выразить количественно точность соответствия? Пирсон изобрел метод, называемый проверкой по критерию хи-квадрат, с помощью которого можно определить верность своего предположения относительно действительного соответствия набора данных распределению. В июле 1892 г. Пирсон провел в Монте-Карло эксперименты, заключавшиеся в точном повторении действий Джаггера {180} 180 Deborah J. Bennett, Randomness (Cambridge, Mass.: Harvard University Press, 1998), p. 123. . В одном эксперименте у Пирсона, как и у Джаггера, выпадавшие числа не соответствовали распределению, какому должны были соответствовать, выдавай рулеточное колесо действительно случайные результаты. В другом эксперименте Пирсон выяснял, сколько пятерок и шестерок выпадает за 26 306 подбрасываний двенадцати костей. И обнаружил, что распределение не такое, какое было бы в вероятностном эксперименте с идеальной костью — то есть в таком эксперименте, в котором вероятность пятерки или шестерки при одном броске была бы равна 1 из 3, или 0,3333. Однако соответствие наблюдалось, если вероятность пятерки или шестерки была 0,3377 — то есть, если кость не была идеальной. В случае с рулеткой игра могла быть сфальсифицированной, однако у костей отклонения могли быть обусловлены неточностями при изготовлении, каковые, как настаивал мой друг Моше, всегда присутствуют.

В наше время проверка по критерию хи-квадрат применяется во многих случаях. Предположим, что вместо испытаний с привлечением костей вы решите провести испытания с тремя пачками из-под хлопьев на предмет их привлекательности для потребителя. Если у потребителей нет предпочтений, можно ожидать, что около 1 из 3 выскажутся за каждую из пачек. Как мы убедились, на практике результаты редко когда распределяются с такой равномерностью. Проведя проверку по критерию хи-квадрат, вы определите, насколько вероятно, что пачка-победитель получит больше голосов в результате потребительских предпочтений, нежели простой случайности. Так же предположим, что исследователи одной фармацевтической компании проводят эксперимент: испытывают два способа лечения, используемые для предупреждения резкого отторжения трансплантанта. Они могут прибегнуть к проверке по критерию хи-квадрат, чтобы определить, существует ли статистически значимая разница между результатами. Или же предположим, что перед открытием нового автосалона руководитель финансовой службы компании по прокату автомобилей ожидает, что 25% клиентов потребуются автомобили среднего класса, 50% — малолитражки и 12,5% — автомобили средней категории и «других». Когда начинают поступать данные о продажах, проверка по критерию хи-квадрат может помочь руководителю быстро проверить: правильны ли его предположения или же новый салон нетипичен и стоит переориентироваться в соответствии со спросом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «(Не)совершенная случайность. Как случай управляет нашей жизнью»

Представляем Вашему вниманию похожие книги на «(Не)совершенная случайность. Как случай управляет нашей жизнью» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «(Не)совершенная случайность. Как случай управляет нашей жизнью»

Обсуждение, отзывы о книге «(Не)совершенная случайность. Как случай управляет нашей жизнью» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x