Год, когда Бернулли назначили профессором Базельского университета, оказался важнейшим годом в истории математики: в этот год Готфрид Лейбниц опубликовал свой революционный труд, в котором изложил основы интегрального исчисления — дополнение к работе 1684 г. об исчислении дифференциальном. Ньютон напечатает собственную работу по данной теме в 1687 г., в своих «Математических началах натуральной философии» (часто сокращаемых до «Начал»). В этих прогрессивных работах будет содержаться ключ к работе Бернулли на тему теории случайности.
Ко времени своих публикаций и Лейбниц, и Ньютон уже не один год размышляли на данную тему, однако из их практически одновременных публикаций трудно было понять, кому принадлежит честь открытия. Великий математик Карл Пирсон (он еще встретится нам в главе 8) сказал: о репутации математиков «последующие поколения судят не по тому, что те сделали, а по тому, что современники приписали тем» {91} 91 Pearson, The History of Statistics in the 17th and 18th Centuries, p. 226.
. Возможно, Ньютон и Лейбниц согласились бы с подобным утверждением. В любом случае ни один, ни другой не оказались на высоте, к тому же тот, кто настаивал на первенстве, был известен своей резкостью. В то время результат казался запутанным. Немцы и швейцарцы узнали о математическом анализе из труда Лейбница, а англичане и многие французы — из работы Ньютона. С точки зрения современности разница между обоими трудами невелика, однако в конце концов вклад Ньютона часто выделяется, потому как кажется: он в самом деле был первым, а в «Началах» применил свое изобретение для создания современной физики — таким образом «Начала» становятся величайшим научным трудом. Однако Лейбниц разработал более удачную систему обозначений, именно его символы зачастую используются в современном математическом анализе.
Понять было непросто как Ньютона, так и Лейбница. Помимо того, что «Начала» Ньютона называли величайшим научным трудом, их считали также и «одной из самых недоступных для понимания книг, которые когда-либо были написаны» {92} 92 William H. Cropper, The Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking (London: Oxford University Press, 2001), p. 31.
. А труд Лейбница, если верить биографам Якоба Бернулли, «вообще никто не понимал»; он отличался не только туманностью изложения, но и обилием опечаток. Иоганн, брат Якоба, сказал, что это «скорее загадка, нежели разъяснение» {93} 93 Johann Bernoulli, quoted in Pearson, The History of Statistics in the 17th and 18th Centuries, p. 232.
. И в самом деле, работы эти оказались до того невнятными, что ученые высказывали предположение, будто и Лейбниц, и Ньютон намеренно затуманили смысл, чтобы отпугнуть всякого рода любителей. Однако такое таинственное свойство работ сыграло Якобу Бернулли только на руку, поскольку действительно способствовало отделению зерен от плевел, а интеллект Бернулли подпадал именно под первую категорию. Как только он расшифровал мысли Лейбница, в его распоряжении оказалось оружие, которым владела лишь горстка людей в целом мире, а уже с помощью этого оружия Бернулли мог запросто решить задачи, к которым другие не могли даже подступиться.
Набор основных понятий и для математического анализа, и для работы Бернулли заключается в последовательностях, рядах и пределах. Термин «последовательность» для математика значит практически то же самое, что и для любого другого: определенный порядок следования элементов, таких как точки или числа. Ряды — это не что иное, как сумма последовательностей чисел. Если создается впечатление, будто элементы последовательности ведут к чему-то — к определенной конечной точке или конкретному числу, — то в таком случае мы говорим о пределе последовательности.
Хотя математический анализ представляет собой очередное затруднение на пути к пониманию последовательностей, он, как и многие другие идеи, уже был известен древним грекам. В V в. до н. э. греческий философ Зенон с помощью любопытной последовательности сформулировал парадокс, над которым до сих пор любят поспорить студенты философского факультета, особенно после того, как пропустят по кружке-другой пива. Парадокс Зенона заключается в следующем. Предположим, ученик хочет подойти к двери, расстояние до которой — 1 метр. (В качестве единицы измерения мы берем метр, однако это для удобства; то же самое верно для мили и т. д.) Прежде, чем достигнуть двери, он должен достигнуть точки на полпути к ней. Однако для того, чтобы достигнуть точки на полпути, он прежде должен достигнуть точки на полпути к точке на полпути к двери — иными словами, точки на расстоянии одной четверти пути до двери. И так далее до бесконечности. То есть, чтобы дойти до конечного пункта, он должен пройти следующие последовательности расстояний: 1/ 2метра, 1/ 4метра, 1/ 8метра и так далее. Зенон утверждал: так как последовательности выстраиваются до бесконечности, ученику придется идти бесконечное число конечных отрезков пути. Зенон высказался, что это займет у ученика бесконечное количество времени. И вывод Зенона: он никуда не придет.
Читать дальше
Конец ознакомительного отрывка
Купить книгу