Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир

Здесь есть возможность читать онлайн «Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Манн, Иванов и Фербер, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
  • Автор:
  • Издательство:
    Манн, Иванов и Фербер
  • Жанр:
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-500057-008-1
  • Рейтинг книги:
    3 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Удовольствие от
. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of
A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014. Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Задача менеджера на основании этой диаграммы выработать систему Он должен - фото 207

Задача менеджера — на основании этой диаграммы выработать систему. Он должен построить схему распределения номеров между постояльцами таким образом, чтобы каждый получил свой номер после того, как будет заселено конечное число других людей.

К сожалению, предыдущий менеджер не понял этого, и начался хаос. Когда приезжала очередная колонна автобусов, он так волновался, пытаясь быстро расселить пассажиров первого автобуса, что у него не оставалось времени на яростно кричащих пассажиров других автобусов. На диаграмме ниже проиллюстрирована эта недальновидная стратегия, путь которой всегда соответствовал бы пути на восток вдоль строки 1.

Однако новый менеджер все взял под контроль Вместо движения вдоль первой - фото 208

Однако новый менеджер все взял под контроль. Вместо движения вдоль первой строки (обслуживая только первый автобус) он двигался из угла по зигзагообразной схеме, как показано ниже.

Он начинает с первой пассажирки автобуса с номером 1 и дает ей первую пустую - фото 209

Он начинает с первой пассажирки автобуса с номером 1 и дает ей первую пустую комнату. Второй и третий свободные номера займут второй пассажир из первого автобуса и первый пассажир из второго автобуса. Оба находятся на второй диагонали от угла диаграммы. Заселив их, менеджер переходит к третьей диагонали и раздает набор ключей от номеров первому пассажиру из третьего автобуса, второму пассажиру из второго автобуса и третьему пассажиру из первого автобуса.

Надеюсь, тактика менеджера — двигаться от одной диагонали у другой — достаточно очевидна. Нетрудно догадаться, что очередь до любого конкретного человека дойдет за конечное число шагов.

Итак, в отеле Гильберта действительно всегда есть свободные места.

Доказательство, которое я только что представил, — известный аргумент из теории бесконечных множеств. Кантор использовал его, чтобы доказать, что положительных дробей ровно столько (соотношений p/q , где p и q — положительные целые числа), сколько и натуральных чисел (1, 2, 3, 4…). Это гораздо более сильное утверждение, чем то, что оба множества бесконечны. Оно говорит о том, что они бесконечны точно в той степени, в какой между ними может быть установлено взаимно-однозначное соответствие.

Вы можете рассматривать это соответствие как систему напарников, в которой каждое натуральное число состоит в паре с некоей положительной дробью, и наоборот. Кажется, что наличие такой системы противоречит здравому смыслу. Это своего рода софистика, приведшая Пуанкаре в ужас. Ибо она предполагает, что мы могли бы сделать исчерпывающий перечень всех положительных дробей, хотя самой маленькой дроби не существует!

И все же есть такой список. Мы его уже нашли. Дробь p/q , в которой пассажиру p соответствует автобус q , а представленное выше доказательство показывает, что каждая из этих дробей может составить пару с определенным натуральным числом 1, 2, 3, …, представляющим собой номер комнаты пассажира в отеле Гильберта.

Позже Кантор также доказал, что взаимно однозначного соответствия между этими парами быть не может. Поскольку множество действительных чисел, лежащих между 0 и 1, неисчислимо и не может быть поставлено в однозначное соответствие с натуральными числами. Для гостиничного бизнеса это означает, что, если все вещественные числа появятся у стойки администратора и начнут звонить в колокольчик, для них не хватит свободных номеров даже в отеле Гильберта.

Докажем это утверждение от противного. Допустим, каждому действительному числу можно дать собственную комнату. Тогда реестр жильцов, которые определены десятичными дробями, и список номеров комнат будут выглядеть примерно так:

Номер 1: 0,6708112345…

Номер 2: 0,1918676053…

Номер 3: 0,4372854675…

Номер 4: 0,2845635480…

Помните, список должен быть полным. Каждое действительное число между 0 и 1 должно появиться в каком-то конечном месте реестра.

Кантор показал, что в подобном перечне отсутствует много чисел. Вот это и есть противоречие. Например, чтобы построить число, которое нигде не появляется в представленном выше списке, спуститесь по диагонали и составьте новое число из подчеркнутых цифр:

Номер 1: 0,6708112345…

Номер 2: 0,1918676053…

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир»

Представляем Вашему вниманию похожие книги на «Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Стивен Строгац
Отзывы о книге «Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир»

Обсуждение, отзывы о книге «Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x