Сегодня мы купаемся в некогда гипотетических волнах Максвелла, имея радио, телевидение, сотовые телефоны и Wi-Fi. Таково наследие его колдовства с символами.
Часть V. Многоликие данные

Статистика внезапно стала сверхмодным направлением. С появлением интернета, электронной торговли, социальных сетей, проекта по расшифровке генома человека, а также в связи с развитием цифровой культуры в целом мир стал захлебываться в данных. [113] Новейшие исследования в области данных см. в работах S. Baker, The Numerati (Houghton Mifflin Harcourt, 2008); I. Ayres, Super Crunchers (Bantam, 2007).
Маркетологи изучают наши вкусы и привычки. Разведывательные службы собирают информацию о нашем местонахождении, электронной переписке и телефонных звонках. Специалисты по спортивной статистике жонглируют цифрами [114] Как специалисты по спортивной статистике жонглируют цифрами, см. M. Lewis, Moneyball (W. W. Norton and Company, 2003).
, решая, каких игроков покупать, кого набирать в команду, а кого посадить на скамью запасных. Каждый стремится объединить точки в график и обнаружить закономерность в беспорядочном скоплении данных.
Неудивительно, что эти тенденции отражаются и в обучении. «Давайте обратимся к статистике» [115] См. N. G. Mankiw, A course load for the game of life, New York Times (September 4, 2010).
, — увещевает в своей колонке газеты New York Times Грег Мэнкью, экономист из Гарвардского университета. «В учебной программе по математике в средней школе слишком много времени уделяется традиционным темам, таким как евклидова геометрия и тригонометрия. Эти полезные для обычного человека умственные упражнения, однако, малоприменимы в повседневной жизни. Учащимся было бы гораздо полезнее больше узнать о теории вероятности и статистике». Дэвид Брукс идет еще дальше [116] См. D. Brooks, Harvard-bound? Chin up, New York Times (March 2, 2006).
. В своей статье, посвященной дисциплинам, заслуживающим внимания для получения достойного образования, он пишет: «Возьмите статистику. Вот увидите, окажется, что знание того, что такое стандартное отклонение, вам очень пригодится в жизни».
Вполне вероятно, а еще неплохо разбираться в том, что такое распределение. Это первое, о чем я намерен поговорить. И хотел бы заострить на нем внимание, поскольку в этом заключается один из главных уроков статистики [117] Введение в статистику вместе с захватывающими историями найдете в книгах D. Salsburg, The Lady Tasting Tea (W. H. Freeman, 2001); L. Mlodinow, The Drunkard’s Walk (Pantheon, 2008). Прим. ред.: Введение в статистику на русском языке: Положинцев Б.И. Теория вероятностей и математическая статистика. Введение в математическую статистику: Учебное пособие. СПб.: Изд-во Политехн. ун-та, 2010; Орлов А.И. Прикладная статистика. М.: Экзамен, 2004.
: вещи кажутся безнадежно случайными и непредсказуемыми при рассмотрении их по отдельности, однако в совокупности в них обнаруживается закономерность и предсказуемость.
Возможно, вы видели демонстрацию этого принципа в каком-нибудь научном музее (если нет, видеоролики можно найти в интернете). Типичный экспонат представляет собой приспособление под названием доска Гальтона [118] Если вы не знакомы с доской Гальтона, можете посмотреть опыты с ней на YouTube: http://www.youtube.com/watch?v=xDIyAOBa_yU.
, которая чем-то напоминает автомат для игры в пинбол, только без флипперов. Внутри его с равными интервалами располагаются ровные ряды штырьков.

Опыт начинается с того, что в верхнюю часть доски Гальтона запускаются сотни шариков. При падении они сталкиваются со штырьками и с равной вероятностью отскакивают то вправо, то влево, а затем распределяются внизу доски, попадая в отсеки одинаковой ширины. Высота столбика из шариков показывает, с какой вероятностью шарик может оказаться в данном месте. Большинство шариков размещаются примерно в середине, по бокам их уже меньше, и еще меньше — по краям. В общем, картина чрезвычайно предсказуема: шарики всегда образуют распределение в форме колокола, хотя предугадать, где окажется каждый отдельно взятый шарик, невозможно.
Каким образом отдельные случайности превращаются в общие закономерности? Но именно так действует случайность. В среднем столбике скопилось больше всего шариков потому, что, прежде чем скатиться вниз, многие из них совершат примерно одинаковое количество прыжков вправо и влево и в результате окажутся где-то посередине. Несколько одиноких шариков, расположившихся по краям, образуют хвосты распределения — это те шарики, которые при столкновении со штырьками отскакивали всегда в одном направлении. Такие отскоки маловероятны, поэтому по краям так мало шариков.
Читать дальше