Charles Gillespie, ed., The Dictionary of Scientific Biography (New York: Charles Scribner’s Sons, 1970–1990).
Лучшая современная биография Декарта: Jack Vrooman, Rene 2 Descartes (New York: G. P. Putnam’s Sons, 1970). Описание сплетения его жизни с математикой см.: Muir, стр. 47–76; Stuart Hollingdale, Makers of Mathematics (New York: Penguin Books, 1989), стр. 124–136; Kramer, стр. 134–166; Bryan Morgan, Men and Discoveries in Mathematics (London: John Murray, 1972), стр. 91–104.
В разных источниках приводится разный возраст. Распределение этих данных выглядит равномерным.
Muir, стр. 50.
Muir, стр. 50.
Kline, Mathematical Thought , стр. 308.
Molland, стр. 40.
которая называется окружностью
на окружность круга
Пер. с греч. Д. Д. Мордухай-Болтовского. — Прим. пер.
«Вестсайдская история» (West Side Story) — американский мюзикл 1957 года (музыка Леонарда Бернстайна, слова Стивена Сондхайма), адаптация классической пьесы Уильяма Шекспира «Ромео и Джульетта». «Истсайдская история» — вероятно, одна из серий американского телесериала «Беверли-Хиллз, 90210» (1990–2000). — Прим. пер.
Описание работ Птолемея см.: Wilford, стр. 25–34. В 1569 г., за несколько десятков лет до рождения Декарта, у картографии случилась своя революция: Герхард Кремер, более известный под своим латинизированным именем Герард Меркатор, издал карту мира новой разновидности. Этой картой Меркатор решил задачу проекции сферы Земли на плоскую поверхность — способом, особенно удобным для навигаторов. И хотя карта Меркатора растягивала и сжимала реальные расстояния, углы между кривыми сохранялись правильные, т. е. на карте они были такими же, как и на земной поверхности. Это важно, поскольку самый простой курс для кормчего — двигаться под фиксированным углом к северу, по указанию стрелки компаса. Математически говоря, важность этой карты в том, что она трансформировала координаты. Сам Меркатор никакой математикой не занимался — он составил карту эмпирически. Картезианская геометрия позволяет производить математический анализ, и в результате понимание картографии получается гораздо глубже. Декарт знал о карте Меркатора, но нам неведомо, насколько успехи картографии повлияли на Декарта — и повлияли ли вообще, поскольку он не утруждался указывать ссылки на чужие работы в своих. О математике, стоящей за трудами Меркатора, см.: Resnikoff and Wells, стр. 155–168.
Декарт не просто унаследовал всю алгебру, потребную для его работы. Он сам изобрел значительную ее часть. Во-первых, он предложил современный вид записи с применением последних букв алфавита для обозначения неизвестных переменных и первых — для обозначения постоянных. До Декарта язык алгебры не блистал изяществом. К примеру, Декарт записал бы 2 x 2 + x 3, а до него то же выражалось так: «2 Q плюс C », где через Q обозначали квадрат ( carre 2), а через С — куб. Запись Декарта совершеннее, потому что она исчерпывающе фиксирует и неизвестное число, возводимое в квадрат и в куб ( х ), и характер степеней х (2 и 3). Применив это более изящное написание, Декарт смог складывать и вычитать уравнения и производить с ними другие арифметические операции. Он смог классифицировать алгебраические выражения согласно типу кривой, которую они представляли. Например, он опознал уравнения 3 х + 6 y — 4 = 0 и 4 х + 7 у + 1 = 0 как представляющие прямые, которые он изучил в общем случае ax + by + c = 0. Таким образом, он преобразовал алгебру из науки, изучающей мешанину отдельных уравнений, в дисциплину оформленных классов уравнений, см.: Vrooman, стр. 117–118. Более общую историю алгебраических символов см.: Kline, Mathematical Thought , стр. 259–263, и Resnikoff and Wells, стр. 203–206.
По таблице, приведенной в «Нью-Йорк Таймс» 11 января 1981 г. и процитированной у Тафта.
Теперь нам становится понятнее декартово определение окружности. Если окружность имеет центр в точке начала координат, и координаты точки на окружности — х и у , тогда требование, чтобы х и у отвечали уравнению х 2 + у 2 = r 2, попросту означает, что все точки на окружности должны находиться на расстоянии r от центра; это простое интуитивное определение, знакомое нам со школы.
Хоть мы и объяснили это для плоскости, двухмерного пространства, декартовы координаты просто будет распространить на три и более измерения. К примеру, уравнение сферы х 2 + у 2 + z 2 = r 2, изменение состоит лишь в дополнительной координате z. Таким образом, физические теории могут быть описаны с помощью произвольного числа пространственных измерений. Выясняется, что обычная квантовая механика принимает чрезвычайно простой вид при бесконечном числе пространственных измерений, и это свойство применяется для нахождения приблизительных ответов для уравнений, решение которых иначе затруднительно. Интересующимся математикой рекомендуем: L. D. Mlodinow and N. Papanicolaou, «SO(2,1) Algebra and Large N Expansions in Quantum Mechanics», Annals of Physics, том 28, № 2 (сентябрь, 1980), стр. 314–334.
Читать дальше
Конец ознакомительного отрывка
Купить книгу