Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства

Здесь есть возможность читать онлайн «Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Livebook, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Евклидово окно. История геометрии от параллельных прямых до гиперпространства: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы привыкли воспринимать как должное два важнейших природных умений человека — воображение и абстрактное мышление, а зря: «Евклидово окно» рассказывает нам, как происходила эволюция нашей способности представлять то, чего мы не видим воочию.
Эта книга — восхитительная смесь научного авторитетного труда и веселого балагурства, она превращает классические теории и понятия геометрии в доступные, поражающие воображение истории.
Спасибо Млодинову: не нужно быть математиком или физиком, чтобы постичь загадки пространства и поразиться великолепию мироустройства.
Перевод: Шаши Мартынова

Евклидово окно. История геометрии от параллельных прямых до гиперпространства — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Евклидово окно. История геометрии от параллельных прямых до гиперпространства», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Что сверху вниз глядела, зря,

Как меряет город жена царя

Иглой от броши своей,

Иль на дряблых людей, что взирали

Из мелочного Вавилона

На беспечность планет и пути их

И таянье звезд от взошедшей луны,

А сами в скрижали суммы писали…

Здесь и далее прим. автора, кроме оговоренных особо.

2

Michael Williams, A History of Computing Technology (Englewood Cliffs, NJ: Prentice-Hall, 1985), стр. 39–40.

3

Интересно о происхождении счета и арифметики у Уильямза, гл. 1.

4

Williams, стр. 3.

5

R. G. W. Anderson, The British Museum (London: British Museum Press, 1997), стр. 16.

6

Pierre Montet, Eternal Egypt , trans. Doreen Weightman (New York: New American Library, 1964), стр. 1–8.

7

Pierre Montet, Eternal Egypt , trans. Doreen Weightman (New York: New American Library, 1964), стр. 1–8.

8

Georges Jean, Writing: The Story of Alphabets and Scripts, trans. Jenny Oates (New York: Harry N. Abrams, 1992), стр. 27.

9

Геродот писал, что развитие египетской геометрии стимулировали задачи налогообложения. См.: W. K. C. Guthrie, A History of Greek Phulosophy (Cambridge, UK: University Press, 1971), стр. 34–35, и Herbert Turnbull, The Great Mathematicians (New York: New York University Press, 1961), стр. 1.

10

Rosalie David, Handbook of Life in Ancient Egypt (New York: Facts on File, 1998), стр. 96.

11

Эти и другие поразительные факты можно найти благодаря вкладу Алексея в эти примечания — вот где: James Putnam and Jeremy Pemberton, Amazing Facts about Ancient Egypt (London and New York: Thames & Hudson, 1995), стр. 46.

12

Хороший обзор вавилонской и шумерской математики см.: Edna E. Kramer, The Nature and Growth of Modern Mathematics (Princeton, NJ: Princeton University Press, 1981), стр. 2–12.

13

Для сравнения египетской и вавилонской математик см.: Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford University Press, 1972), стр. 11–22. См. Также: H. L. Resnikoff and R. O. Wells, Jr., Mathematics in Civilization (New York: Dover Publications, 1973), стр. 69–89.

14

Также известен как «папирус Ахмеса»; Александр Генри Ринд (Райнд, 1833–1863) — шотландский юрист и египтолог. — Прим. пер.

15

Resnikoff and Wells, стр. 69.

16

Kline, стр. 11.

17

Цит. по: The First Mathematicians (март, 2000); сходная, но более сложная риторическая задача есть у Клайна, стр. 9.

18

Kline, стр. 259.

19

О жизни и работе Фалеса см.: Sir Thomas Heath, A History of Greek Mathematics (New York: Dover Publications, 1981), стр. 118–149; Jonathan Barnes, The Presocratic Philosophers (London: Routledge & Kegan Paul, 1982), стр. 1–16; George Johnston Allman , Greek Geometry from Thales to Euclid (Dublin, 1889), стр. 7–17; G. S. Kirk and J. E. Raven, The Presocratic Philosophers (Cambridge, UK: University Press, 1957), стр. 74–98; Hooper, стр. 27–38; Guthrie, стр. 39–71.

20

Meander (англ.) — изгиб, извилина, излучина, поворот. — Прим. пер.

21

Reay Tannahill, Sex in History (Scarborough House, 1992), стр. 98–99.

22

Richard Hibler, Life and Learning in Ancient Athens (Lanham, MD: University Press of America, 1988), стр. 21.

23

28 мая 585 года до н. э. по современному летоисчислению; битва между лидийцами и мидянами. — Прим. пер.

24

Hooper, стр. 37.

25

Erwin Schroedinger, Nature and the Greeks (Cambridge: Cambridge University Press, 1996), стр. 81.

26

Hooper, стр. 33.

27

О милетской жизни см.: Adelaide Dunham, The History of Miletus (London: University of London Press, 1915).

28

См.: Guthrie, стр. 55–80, и Peter Gorman, Pythagoras, A Life (London: Routledge & Kegan Paul, 1979), стр. 32.

29

Gorman, стр. 40.

30

Хорэс Грили (1811–1872) — американский журналист и политик, социалист-утопист, прославился фразой в своей редакторской колонке, опубликованной 13 июля 1865 г.: «Ступайте на Запад, молодой человек, ступайте на Запад…» — Прим. пер.

31

Наиболее полная биография Пифагора, со всеми ссылками, — гормановская. Также см.: Leslie Ralph, Pythagoras (London: Krikos, 1961).

32

См.: Donald Johanson and Blake Edgar, From Lucy to Language (New York: Simon & Schuster, 1996), стр. 106–107.

33

См.: Donald Johanson and Blake Edgar, From Lucy to Language (New York: Simon & Schuster, 1996), стр. 106–107.

34

Square deal (англ. букв.) — «квадратная сделка», употребляется в значении «справедливая, честная сделка». — Прим. пер.

35

Gorman, стр. 108.

36

Gorman, стр. 19.

37

Gorman, стр. 110.

38

Gorman, стр. 111.

39

Gorman, стр. 111.

40

Gorman, стр. 123.

41

Для интересующихся математикой приведем доказательство. Обозначим длину диагонали как с и начнем с допущения, что с можно выразить в виде дроби — скажем, m/n , в которой у m и n нет общих делителей, и они ни в коем случае не четные одновременно. Доказательство производится в три этапа. Первый: заметим, если с 2 = 2, значит, m 2 = 2 n 2. Словами: m 2 — четное число. Поскольку квадраты нечетных чисел — нечетные, значит, и m само по себе должно быть четным. Второй: поскольку m и n не могут быть оба четными, значит, n должно быть нечетным. Третий: взглянем на уравнение m 2 = 2 n 2 с другой стороны. Поскольку m — четное, его можно записать как 2 q , при любом q . Если заменить m в m 2 = 2 n 2 на 2 q , получим 4 q 2 = 2 n 2, что то же самое, что и 2 q 2 = n 2. Это означает, что n 2, а следовательно, и n — четное.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»

Представляем Вашему вниманию похожие книги на «Евклидово окно. История геометрии от параллельных прямых до гиперпространства» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»

Обсуждение, отзывы о книге «Евклидово окно. История геометрии от параллельных прямых до гиперпространства» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x