Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства

Здесь есть возможность читать онлайн «Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Livebook, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Евклидово окно. История геометрии от параллельных прямых до гиперпространства: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы привыкли воспринимать как должное два важнейших природных умений человека — воображение и абстрактное мышление, а зря: «Евклидово окно» рассказывает нам, как происходила эволюция нашей способности представлять то, чего мы не видим воочию.
Эта книга — восхитительная смесь научного авторитетного труда и веселого балагурства, она превращает классические теории и понятия геометрии в доступные, поражающие воображение истории.
Спасибо Млодинову: не нужно быть математиком или физиком, чтобы постичь загадки пространства и поразиться великолепию мироустройства.
Перевод: Шаши Мартынова

Евклидово окно. История геометрии от параллельных прямых до гиперпространства — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Евклидово окно. История геометрии от параллельных прямых до гиперпространства», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Тем временем в нью-йоркской головной конторе ее начальники в костюмах анализируют ход своей мировой войны с сухостью кожи, применяя методы, изобретенные человеком, о котором, без сомнения, ни один из этих начальников сроду ни разу не задумался. Вообразим графики, отражающие ежегодный рост прибылей «Эйвона» по сегментам рынка: международные показатели — синим, местные — красным. Ежегодный отчет иллюстрирует общий оборот компании, объемы сбыта, прибыли отдельных торговых точек; в нем целые страницы прочих показателей во всех мыслимых видах графиков и диаграмм — и тебе столбчатых, и круговых.

Если бы средневековый торговец показал кому-нибудь результаты своей работы в таком виде, на него бы вытаращили глаза. Что означают эти разноцветные геометрические фигуры, соседствующие в том же документе с римскими цифрами? Макароны и сыр уже успели изобрести (сохранился английский рецепт XIV века [102]), а вот идею поженить числа и геометрические фигуры — нет. Ныне графическое представление знания настолько общепринято, что мы едва ли думаем о нем как о математическом приеме: даже самый матемафобный директор «Эйвона» понимает, что линия на графике прибылей, тянущаяся вверх, есть многая радость. Но куда бы ни тянулись графики — вниз или вверх, — изобретение их стало жизненно важным шагом на пути к теории местоположения.

Союз чисел и геометрии греки понимали, увы, неверно — аккурат в этом месте философия оказалась помехой. В наши дни любой школьник изучает, грубо говоря, числовой ряд — линию, обеспечивающую упорядоченную связь между точками на ней и положительными и отрицательными целыми числами, равно как и между всеми дробями и прочими числами на этой линии. Эти «другие числа» — иррациональные, т. е. не целые и не дроби, как раз их отказался признавать Пифагор, но они тем не менее существуют. Числовой ряд обязан включать в себя и их — без иррациональных чисел в нем возникнет бесконечное множество дыр.

Мы уже говорили, как Пифагор открыл квадрат с длиной стороны в единицу, у которого диагональ равна квадратному корню из двух, а это иррациональное число. Если эту самую диагональ отложить в числовом ряду от нуля, другой ее конец обозначит точку, соответствующую иррациональному числу — квадратному корню из двух. Запретив обсуждение иррациональных чисел — они не вписывались в его представления о том, что все числа обязаны быть либо целыми, либо дробными, — Пифагор был вынужден запретить и ассоциацию прямой с числом. Таким способом он замел эту неувязку под ковер — и придушил тем самым одну из самых плодотворных идей в истории человеческой мысли. У всех свои недостатки.

Одним из немногих преимуществ утери греческих трудов стал упадок влияния пифагоровых представлений об иррациональных числах. Теория иррациональных чисел не получила твердого фундамента аж до самого Георга Кантора и работ его современника Рихарда Дедекинда — в XIX веке. И тем не менее, со Средних веков и до Дедекинда и Кантора большинство математиков и ученых закрывали глаза на кажущееся несуществование иррациональных чисел и вполне счастливо, хоть и неумело, все равно их применяли. Очевидно, радость получения правильного ответа перевешивала неприятности работы с числами, которых не существует.

В наше время применение «нелегальной» математики — общее место науки, особенно физики. Теория квантовой механики, например, разработанная в 1920–1930-х годах, очень полагалась на нечто придуманное английским физиком Полем Дираком — дельта-функцию. Согласно математике того времени, дельта-функция попросту равнялась нулю. По Дираку же, дельта-функция равна нулю всюду, кроме одной точки, где ее значение — бесконечность, и, если применить эту функцию вместе с определенными методами счисления, она дает ответы одновременно и конечные, и (обычно) отличные от нуля. Позднее французский математик Лоран Шварц смог доказать, что правила математики можно переформулировать так, чтобы допустить существование дельта-функции, и из этого доказательства родилась целая новая область математики [103]. Квантовые теории поля в современной физике в этом смысле тоже можно считать «нелегальными» — во всяком случае, никто пока не смог успешно доказать, говоря математически, что такие теории существуют «по правилам».

Средневековые философы горазды были говорить одно, а записывать другое — или даже писать сначала одно, а потом другое в полном противоречии с первым, лишь бы сберечь шкуру. И вот в середине XIV века Николай Орезмский [104], позднее — епископ Лизьё, — изобретая графики, не слишком беспокоился о противоречиях, возникающих из-за иррациональных чисел. Орем по умолчанию игнорировал вопрос о том, достаточно ли одних лишь целых и дробных чисел для заполнения базисной прямой графика. Он сосредоточился на том, как приспособить свои новые картинки к анализу количественных отношений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»

Представляем Вашему вниманию похожие книги на «Евклидово окно. История геометрии от параллельных прямых до гиперпространства» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»

Обсуждение, отзывы о книге «Евклидово окно. История геометрии от параллельных прямых до гиперпространства» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x