Тем не менее достаточно непросто осознать, что погода и климат априори непредсказуемы в долгосрочном периоде в силу присутствия хаоса. В 1970-е годы многие исследователи ожидали, что путем добавления все новых и новых переменных они смогут стабилизировать систему и спрогнозировать состояние атмосферы в долгосрочном периоде. К примеру, Жюль Чарни оптимистично заявлял: «Не существует причины, по которой нельзя будет предсказать жизненный цикл атмосферы с помощью численных моделей, — все дело в том, что современные модели обладают серьезными недостатками». Однако один из этих серьезных недостатков был и остается неустранимым — это хаос.
Для некоторых ученых, как отмечает Тим Палмер (один из ведущих климатологов Межправительственной группы экспертов по изменению климата) в статье под названием «Глобальное потепление нелинейно. Можем ли мы быть в этом уверены?», хаос проявляется не столько в предсказании климата, сколько в метеорологических прогнозах. Следуя терминологии, предложенной Лоренцем, составление метеорологических прогнозов относится к задачам о начальных условиях, в которых эффект бабочки играет важную роль, поскольку при решении таких задач рассматриваются различные траектории. Если мы хотим составить прогноз погоды, нужно следовать вдоль траектории-решения уравнений, начальные условия которых описывают погоду на сегодня (температуру, давление, влажность и пр.). Прогнозирование климата, напротив, основано на решении так называемой краевой задачи, в которой влияние эффекта бабочки не столь заметно, поскольку основную роль в ней играют аттракторы, а не траектории. При изучении климата интерес представляет поведение системы в долгосрочном периоде, которое описывается аттрактором. Иными словами, если мы хотим предсказать климат, не нужно следовать вдоль какой-либо конкретной траектории — напротив, необходимо будет проанализировать, как ведут себя траектории в долгосрочном периоде по мере приближения к аттрактору, ведь именно аттрактор описывает средний погодный режим, то есть климат. Если мы также хотим понять, какое влияние оказывают на климат различные факторы и величины (концентрация СО 2в атмосфере, солнечное излучение и пр.), необходимо рассмотреть, как эти параметры меняют форму аттрактора.
Если мы представляем климат в виде аттрактора атмосферной системы, то эффект бабочки проявляться не будет. Однако, поскольку климатическая система нелинейна и, предположительно, обладает хаотическим поведением, то аттрактор будет странным и, возможно, будет иметь впадины, изобилующие крупными и мелкими деталями, то есть не слишком нестабильным. Представим, что климат описывается аттрактором системы Лоренца, и поворот вокруг его правого «крыла» означает, что пойдет дождь, а поворот вокруг левого «крыла» соответствует ясной погоде. В этом случае мы сможем определить закономерность, которой будет подчиняться климат в целом: в какие-то дни будет идти дождь, в другие — нет. Тем не менее нам сложно будет получить более подробную информацию, так как траектории вращаются вокруг каждого «крыла» аттрактора случайным образом.
Сегодня, спустя более 40 лет с момента открытия Лоренца, методы краткосрочного и среднесрочного прогнозирования существенно улучшились, поскольку развитию теории сопутствовало совершенствование суперкомпьютеров, способных снизить хаотичность погоды и климата. Одним из результатов этого развития стало появление так называемого ансамблевого, или комплексного прогноза ( ensemble forecasting ), который заключается в одновременном использовании нескольких множеств начальных условий и множеств математических моделей. Этот метод позволяет снизить ошибки при определении начальных условий и скомпенсировать ошибки, присущие непосредственно моделям.
Для краткосрочных (метеорологических) прогнозов, где преобладают ошибки, связанные с неопределенностью начальных условий, уже много лет успешно используется ансамблевый прогноз с одной моделью и множеством начальных условий. Иными словами, при прогнозировании погоды рассматривается развитие модели для похожих начальных условий, после чего путем сравнения различных результатов составляется итоговый прогноз. Как правило, эти результаты (порядка пятидесяти) для первых дней прогноза достаточно похожи, но после третьего или четвертого дня начинают проявляться расхождения, которые постепенно растут.
Комплексный прогноз температуры в Лондоне, составленный 26.06.1994 Европейским центром среднесрочного прогнозирования погоды (ECMWF). Начиная с четвертого дня разница в прогнозах составляет почти 16 °C (от 14 до 30 °С).
Читать дальше