Ответ таков: хаотические системы могут оказаться невероятно полезными при прогнозировании, однако сам хаос по своей природе накладывает серьезные ограничения на возможность составления прогнозов.
Однако динамику хаотических систем можно спрогнозировать в краткосрочном периоде. А после этого, сколь бы точно мы ни измерили начальные данные, мы неизбежно допустим ошибку, которая впоследствии существенно возрастет, и с определенного момента динамика хаотической системы станет непредсказуемой.
Но эта непредсказуемость не проявляется мгновенно. Если составить прогнозы в среднесрочном и долгосрочном периоде нельзя, то, получается, наука бесполезна? Вовсе нет, ведь помимо количественных оценок существуют и качественные. Процитируем Пуанкаре, который в свое время объяснил суть вопроса с присущей ему четкостью:
«Физик или инженер скажет нам: „Можете ли вы проинтегрировать это дифференциальное уравнение? Результат понадобится мне через восемь дней, чтобы закончить проект здания в срок". Мы ответим: „Это уравнение не относится ни к одному из интегрируемых типов, и вам прекрасно известно, что других типов не существует". „Да, это мне известно, но для чего же тогда нужны вы, господин математик?" Ранее уравнение считалось решенным только тогда, когда его решение можно было представить с помощью конечного числа известных функций, однако найти решение в таком виде можно едва ли для одного процента уравнений. Мы всегда можем решить любую задачу „качественно", то есть попытаться определить общий вид кривой, описывающей неизвестную функцию».
Хаос помогает увидеть взаимосвязи, формы и структуры там, где никто не подозревает. В хаосе присутствует порядок: случайность описывается геометрически.
При подтверждении научной теории следует придавать большее значение геометрии, а не результатам экспериментов, то есть не количественным, а качественным факторам. Актуальный пример этому мы приведем в следующих главах, где будем говорить о глобальном изменении климата: метеорологи и климатологи часто жертвуют точностью прогноза, чтобы понять общую картину. Они ежедневно сталкиваются с нелинейными задачами и вынуждены делать выбор: составить точную модель, позволяющую делать прогнозы (существование такой модели по определению невозможно), или предпочесть ей упрощенную модель, чтобы рассмотреть явление в общих чертах. Цель науки — не только прогнозирование, не только поиск набора эффективных рецептов, но и понимание природы вещей.
К примеру, Декарт своей теорией вихрей и движущейся материи объяснял всё, но не предсказывал ничего. Ньютон, напротив, своими законами и теорией тяготения рассчитал всё, но не объяснил ничего. История подтвердила правоту Ньютона, а измышления Декарта отошли в область фантазий. На протяжении многих веков на первый план выдвигалась именно возможность составления прогнозов. Ньютоновская теория тяготения одержала верх над декартовой теорией вихрей, низвергнув ее в небытие. С математическими моделями теории хаоса происходит то же самое, что и с теориями Декарта: они имеют качественный характер и не могут применяться для составления прогнозов или как руководство к действию, а служат скорее для описания и понимания явлений природы.
Если математика и физика прошлого изучали круги и часовые механизмы, то математика и физика наших дней интересуются фракталами и облаками.
Глава 4. Математическое описание глобального изменения климата
То, что можно полностью контролировать, никогда не бывает полностью реальным; то, что реально, никогда не бывает полностью контролируемым.
Владимир Набоков
Если бы человечество могло составить список самых насущных проблем третьего тысячелетия, одной из них наверняка стало бы глобальное изменение климата. Это многогранная задача, которая имеет не только научный, но, как вы увидите далее, экономический и политический аспект. Мы рассмотрим эту проблему с точки зрения математики, поскольку математика хаоса играет в ней очень важную роль.
Математика и экология
Математическая экология — раздел математики, пребывающий в более чем почтенном возрасте: он «повзрослел» еще два столетия назад, в XIX веке. В то время многие ученые стали применять математические методы для изучения взаимоотношений между живыми организмами и окружающей средой. Мы уже знакомы с некоторыми из этих ученых, в частности с Пьером Франсуа Ферхюльстом, который описал логистическое отображение для моделирования динамики численности определенных популяций. К числу этих ученых принадлежал и итальянский математик и физик Вито Вольтерра(1860–1940) , известный тем, что сформулировал систему нелинейных дифференциальных уравнений, описывавших динамику биологической системы, в которой между собой взаимодействовали всего два вида живых существ — хищники и жертвы. Однако математика оказалась полезной не только при изучении динамики численности популяций, но и, уже в XX веке, при моделировании погоды и климата — двух систем, элементами которых являемся мы, люди. Глобальное изменение климата представляет собой междисциплинарную задачу: ее решением занимаются климатологи, метеорологи, физики, геологи, биологи, экономисты. Климатическая система относится к сложным системам и состоит из пяти подсистем: атмосферы (воздуха), гидросферы (воды), литосферы (земли), криосферы (льда) и биосферы (живых организмов). Бесконечную сложность окружающей среды нельзя понять, не изучив множество связей между экосистемами Земли.
Читать дальше